Benzo-annulated chromenes, i.e., naphthopyrans, are well-known photochromic molecules that undergo photochemical ring-opening reactions to form two colored open-ring isomers, the transoid-cis and transoid-trans forms, upon light irradiation. Though the transoid-cis form returns thermally to the uncolored closed form, the fading rate of the transoid-trans form is extremely slow because of its higher thermal stability. This slow fading behavior of the transoid-trans form is responsible for the persistence of residual color for several minutes to hours, and prevents the application of such molecules to fast photoswitching materials. We have found a new simple and versatile strategy to substantially reduce the amount of the undesirable long-lived colored transoid-trans form by introducing an alkoxy group at the 1-position of azino-fused chromenes, i.e., 8H-pyranoquinazolines. The alkoxy group effectively reduces the formation of the transoid-trans form due to C-H···O intramolecular hydrogen bonding in the transoid-cis form. Moreover, the introduction of a condensed aromatic ring at the 3-position was found to be effective to increase the photosensitivity of the ring-opening reaction. This strategy can also be applied for naphthopyran derivatives and is useful for the development of fast photoresponsive photochromic lenses and fast photoswitching applications such as dynamic holographic materials and molecular actuators.
Stepwise two-photon processes not only have great potential for efficient light harvesting but also can provide valuable insights into novel photochemical sciences. Here we have designed a [2.2]paracyclophane-bridged bis(imidazole dimer), a molecule that is composed of two photochromic units and absorbs two photons in a stepwise manner. The absorption of the first photon leads to the formation of a short-lived biradical species (half-life = 88 ms at 298 K), while the absorption of the additional photon by the biradical species triggers a subsequent photochromic reaction to afford a long-lived quinoid species. The short-lived biradical species and the long-lived quinoid species display significantly different absorption spectra and rates of the thermal back-reaction. The stepwise two-photon excitation process in this photochromic system can be initiated even by incoherent continuous-wave light irradiation, indicating that this two-photon reaction is highly efficient. Our molecule based on the bridged bis(imidazole dimer) unit should be a good candidate for multiphoton-gated optical materials.
Red or near infrared (NIR) light responsive molecules have received much attention for biological and material applications because potentially harmful UV light for materials and cells is not required for the photochemical reactions. Although some molecular designs for photochromic molecules to increase the photosensitivity to red or NIR light have been reported, the strategies are limited to the extension of π-conjugation length and the utilization of charge transfer transition or energy and electron transfers. Triplet fusion is an attractive tool to cause chemical reactions by converting low energy excitation light to high energy upconversion light. However, the efficient use of the high energy of upconversion light is difficult because almost all reported triplet fusion systems rely on re-absorption of upconversion light. Here, we demonstrated the red-light driven photochromism via the triplet fusion of a phenoxyl-imidazolyl radical complex, Pery RPIC, that has a covalently bonded perylene as an annihilator unit. The femtosecond time-resolved absorption and fluorescence spectroscopy revealed that this photochromic reaction proceeds by the highly efficient singlet energy transfer from the annihilator unit to the photochromic unit. This strategy can be applied not only to the development of visible and NIR light responsive photochromic system but also to various photochemical reactions.
We herein propose a new type of efficient neutral photoacid generator. A photoinduced 6π-electrocyclization reaction of photochromic triangle terarylenes triggers subsequent release of a Brønsted acid, which took place from the photocyclized form. A H-atom and its conjugate base were introduced at both sides of a 6π-system to form the self-contained photoacid generator. UV irradiation to the 6π-system produces a cyclohexa-1,3-diene part with a H-atom and a conjugate base on the sp(3) C-atoms at 5- and 6-positions, respectively, which spontaneously release an acid molecule quantitatively forming a polyaromatic compound. A net quantum yield of photoacid generation as high as 0.52 under ambient conditions and a photoinitiated cationic polymerization of an epoxy monomer are demonstrated.
The development of fluorescence switchable molecules in several polar and apolar environments has been required for fluorescence imaging of nanostructures. Photochromic molecules are an important class for the reversible light-triggered fluorescence switching. Although many studies of fluorescence switching by using photochromic reactions have been reported, the report of photochromic molecules reversibly showing turn-on mode fluorescence switching has been limited in spite of their importance. Herein, we report the photoactivatable fluorescence based on negative photochromism, where the absorption spectrum of the compound after irradiation is blue-shifted relative to that before irradiation. We introduced naphthalimide units as a green fluorophore to the negative photochromic binaphthyl-bridged imidazole dimer. The fluorescence of the naphthalimide unit is efficiently quenched in the initial colored isomer (fluorescence quantum yield: Φfluo. = 0.01) by Förster resonance energy transfer. In contrast, the fluorescence quantum yield increases up to 0.75 in the transient isomer formed by the negative photochromic reaction. The fluorescence intensity thermally decreases with the thermal back reaction to form the original stable colored form. These results indicate that the negative photochromic molecules are suitable for turn-on mode fluorescence switches and will give an attractive insight for the development of reversible fluorescence switching molecules.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.