Protein folding often competes with intermolecular aggregation, which in most cases irreversibly impairs protein function, as exemplified by the formation of inclusion bodies. Although it has been empirically determined that some proteins tend to aggregate, the relationship between the protein aggregation propensities and the primary sequences remains poorly understood. Here, we individually synthesized the entire ensemble of Escherichia coli proteins by using an in vitro reconstituted translation system and analyzed the aggregation propensities. Because the reconstituted translation system is chaperone-free, we could evaluate the inherent aggregation propensities of thousands of proteins in a translation-coupled manner. A histogram of the solubilities, based on data from 3,173 translated proteins, revealed a clear bimodal distribution, indicating that the aggregation propensities are not evenly distributed across a continuum. Instead, the proteins can be categorized into 2 groups, soluble and aggregation-prone proteins. The aggregation propensity is most prominently correlated with the structural classification of proteins, implying that the prediction of aggregation propensity requires structural information about the protein.cell-free translation ͉ protein aggregation ͉ protein folding
Background: Transient receptor potential vanilloid-1 (TRPV1) may modulate allergic airway inflammation because it is expressed not only on the nerve endings but also on several cells of the immune system. We wanted to know the characteristics of airway and systemic responses against sensitization and challenge with allergens in TRPV1 receptor gene knockout mice (TRPV1–/–). Methods: TRPV1–/– and their wild-type counterparts (TRPV1+/+) were sensitized with either house dust mite (HDM) or ovalbumin (OVA) via intranasal (i.n.) or intraperitoneal (i.p.) route before the final i.n. challenge with the corresponding allergen. One day after the final challenge, serum IgE levels, cytokine levels in the bronchoalveolar lavage fluid (BALF), and the number of BALF cells were examined after measuring bronchial hyperresponsiveness against methacholine. Results: Compared to TRPV1+/+, TRPV1–/– showed enhanced Th2-biased response after i.n. HDM or OVA sensitization, including increased levels of serum IgE, interleukin 4 (IL-4) and eosinophils in the BALF. By contrast, when sensitized via i.p. route, the response against OVA or HDM was almost similar between TRPV1+/+ and TRPV1–/–. Conclusion: TRPV1 receptor may downregulate Th2-biased immune response when sensitized via airways, although this was not the case when sensitized systemically.
and were then exposed to two types of radiation (carbon ions and gamma-rays). We found that HDACis enhanced the radiation-induced apoptosis and suppression of clonogenicity that was induced by irradiation, having a greater effect with carbon ion irradiation than with gamma-rays. Carbon ion irradiation and the HDACi treatment induced G2/M and G0/G1 cell cycle arrest, respectively. Thus, it is considered that HDACi treatment enhanced the killing effects of carbon ion irradiation against melanoma cells by inducing the arrest of G1 phase cells, which are sensitive to radiation due to a lack of DNA homologous recombination repair. Based on these findings, we propose that pretreatment with HDACis as radiosensitizers to induce G1 arrest combined with carbon ion irradiation may have clinical efficacy against refractory cancer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.