Colominic acid is an alpha2,8-linked sialic acid polymer produced by Escherichia coli. We found that synthetic sulfated-colominic acids (SC) remarkably inhibited the cytotoxicity of bee and snake venom toward mouse fibroblast cells, but colominic acids showed no inhibition themselves, indicating the important role of sulfate groups in the inhibitory activity of SC. Other sulfated carbohydrates such as chondroitin sulfates, heparin and heparan sulfate showed no inhibition. SC also exhibited potent inhibition of melittin, a highly basic peptide, which is a major cytotoxic component of bee venom. SC did not inhibit phospholipase A2 activity in bee venom. This suggests that the inhibition of bee and snake venom by SC is due to inhibition of melittin and cardiotoxin, which is a cytolytic peptide in snake venom, respectively. SC with a higher sulfur content and a larger molecular mass showed more potent activity. The interaction between SC and melittin basically seems an ionic one, however, the conformation of SC is also likely important. For the binding of SC to melittin leading loss of its cytotoxic activity, the sulfate groups of SC must be properly arranged to interact with lysine and arginine residues of melittin molecules, which play an important role in the cytolytic activity. A higher molecular mass of SC substituted with more sulfate groups is required for more obvious inhibition of the cytotoxic activity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.