In the last two decades, tissue-engineering approaches using scaffolds, growth factors, and cells, or their combination, have been developed for the regeneration of periodontal tissue and bone. The aim of this study was to examine the effects of rat dedifferentiated fat cells (rDFATs) with a poly lactic-co-glycolic acid/hydroxylapatite (PLGA/HA) composite on bone formation in rat calvarial defects. Twenty animals surgically received two calvarial defects (diameter, 5 mm) bilaterally in each parietal bone. The defects were treated by one of the following procedures: PLGA/HA+osteo-differentiated rDFATs implantation (PLGA/HA+rDFATs (OD)); PLGA/HA+rDFATs implantation (PLGA/HA+rDFATs); PLGA/HA implantation (PLGA/HA); no implantation as a control. The animals were euthanized at 8 weeks after the surgery for histological evaluation. The PLGA/HA composite was remarkably resorbed and the amounts of residual PLGA/HA were very slight at 8 weeks after the surgery. The PLGA/HA-implanted groups (PLGA/HA+rDFATs (OD), PLGA/HA+rDFATs and PLGA/HA) showed recovery of the original volume and contour of the defects. The newly formed bone area was significantly larger in the PLGA/HA group (42.10 ± 9.16 %) compared with the PLGA/HA+rDFATs (21.35 ± 13.49 %) and control (22.17 ± 13.08 %) groups (P < 0.05). The percentage of defect closure (DC) by new bone in the PLGA/HA+rDFATs (OD) group (83.16 ± 13.87 %) was significantly greater than that in the control group (40.61 ± 29.62 %) (P < 0.05). Furthermore, the PLGA/HA+rDFATs (OD) group showed the highest level of DC among all the groups. The present results suggest that the PLGA/HA composite is a promising scaffold and that PLGA/HA+DFATs (OD) may be effective for bone formation.
This study evaluated the effects of enamel matrix derivative (EMD) and basic fibroblast growth factor (bFGF) with μ-tricalcium phosphate (μ-TCP) on periodontal healing in intrabony defects in dogs. One-wall intrabony defects created in dogs were treated with μ-TCP alone (μ-TCP), EMD with μ-TCP (EMD/μ-TCP), bFGF with μ-TCP (bFGF/μ-TCP), and a combination of each (EMD/bFGF/μ-TCP). The amount of new bone formation was not significant for any group. The EMD/bFGF/μ-TCP group induced significantly greater new cementum formation than the μ-TCP and bFGF/μ-TCP groups and, although not significantly, formed more new cementum than the EMD/μ-TCP group. These findings indicate that EMD/bFGF/μ-TCP treatment is effective for cementum regeneration.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.