A 36 month leachable study on water for injection in direct contact within a cyclo olefin polymer barrel and chlorinated isoprene isobutene rubber plunger stopper that has a polymer label attached to the barrel and is wrapped into a secondary packaging was conducted at 25 °C and 60% relative humidity. Through the various comparison studies, no difference in the leachable amounts was observed between polymer-based prefilled syringes and a glass bottle as a blank sample reference by 36 months. No influences on the leachables study outcome were noted from the secondary packaging. To obtain more details, a comparison extractable study was conducted between the cyclo olefin polymer and the glass barrel. In addition, chlorinated isoprene isobutene rubber and bromo isoprene isobutene rubber plunger stoppers were compared as well. As a result, no remarkable difference was found in the organic extractables for barrels. As for element extractable analysis, the values for the cyclo olefin polymer barrel were lower than that for the glass barrel. For the plunger stoppers, the chlorinated isoprene isobutene rubber applied in this study was showing a lower extractable profile as compared to the bromo isoprene isobutene rubber, both for organic and element extractables. In conclusion, the proposed polymer-based prefillable syringe system has great potential and represents a novel alternative that can achieve very low level extractable profiles and can bring additional value to the highly sensitive biotech drug market.
Equipment has been designed and assembled in such a way that direct microscopic observation of polymer particle formation in suspension polymerization of vinyl chloride and vinyl acetate is possible. The apparent mode of transformation from monomer droplets into polymer particles has thus been studied under two sets of conditions: (1) with agitation and (2) without agitation. In both cases, as the initial vinyl acetate/vinyl chloride ratio was raised, the apparent change in the shape and transparency of particles occurring during the course of polymerization became less evident. In vinyl chloride homopolymerization and vinyl acetate–vinyl chloride copolymerization with relatively high vinyl chloride concentrations, the polymer particles burst during the course of polymerization. Some factors which affect the change in the size of particles are also discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.