Our study suggests that a relatively high circulating IGF-I bioactivity in elderly men is associated with extended survival and with reduced cardiovascular risk.
We established age-specific normative values for the IGF-I KIRA. We observed a significant drop in IGF-I bioactivity in women between 50 and 60 yr, which was not perceived by IGF-I immunoassays. The IGF-I KIRA, when compared with IGF-I immunoassays, theoretically has the advantage that it measures net effects of IGF-binding proteins on IGF-I receptor activation. However, it has to be proven whether information obtained by the IGF-I KIRA is clinically more relevant than measurements obtained by IGF-I immunoassays.
Peptide receptor-targeted radionuclide therapy is nowadays also being performed with DOTA-conjugated peptides, such as [DOTA(0),Tyr(3)]octreotate, labelled with radionuclides like (177)Lu. The incorporation of (177)Lu is typically >/=99.5%; however, since a total patient dose can be as high as 800 mCi, the amount of free (177)Lu(3+) (= non-DOTA-incorporated) can be substantial. Free (177)Lu(3+) accumulates in bone with unwanted irradiation of bone marrow as a consequence. (177)Lu-DTPA is reported to be stable in serum in vitro, and in vivo it has rapid renal excretion. Transforming free Lu(3+) to Lu-DTPA might reroute this fraction from accumulation in bone to renal clearance. We therefore investigated: (a) the biodistribution in rats of (177)LuCl(3), [(177)Lu-DOTA(0),Tyr(3)]octreotate and (177)Lu-DTPA; (b) the possibilities of complexing the free (177)Lu(3+) in [(177)Lu-DOTA(0),Tyr(3)]octreotate to (177)Lu-DTPA prior to intravenous injection; and (c) the effects of free (177)Lu(3+) in [(177)Lu-DOTA(0),Tyr(3)]octreotate, in the presence and absence of DTPA, on the biodistribution in rats. (177)LuCl(3) had high skeletal uptake (i.e. 5% ID per gram femur, with localization mainly in the epiphyseal plates) and a 24-h total body retention of 80% injected dose (ID). [(177)Lu-DOTA(0),Tyr(3)]octreotate had high and specific uptake in somatostatin receptor-positive tissues, and 24-h total body retention of 19% ID. (177)Lu-DTPA had rapid renal clearance, and 24-h total body retention of 4% ID. Free (177)Lu(3+) in [(177)Lu-DOTA(0),Tyr(3)]octreotate could be complexed to (177)Lu-DTPA. Accumulation of (177)Lu in femur, blood, liver and spleen showed a dose relation to the amount of free (177)Lu(3+), while these accumulations could be normalized by the addition of DTPA. After labelling [DOTA(0),Tyr(3)]octreotate with (177)Lu the addition of DTPA prior to intravenous administration of [(177)Lu-DOTA(0),Tyr(3)]octreotate is strongly recommended.
IFNbeta1a is much more potent than IFNalpha2b to suppress ACC cell proliferation in vitro by induction of apoptosis and cell cycle arrest. Further studies are required to evaluate the potency of IFNbeta1a to inhibit tumor growth in vivo.
We recently demonstrated that interferon (IFN)-β has a more potent antitumor activity than IFN-α in BON cells, a neuroendocrine tumor (NET) cell line. The present study showed the role of type I IFNs in the modulation of the insulin-like growth factor (IGF) system in NETs. BON cells expressed IGF-I, IGF-II, IGF-I receptor, and insulin receptor mRNA. In addition, IGF-I and IGF-II stimulated the proliferation of BON cells and induced an inhibition of DNA fragmentation (apoptosis). As evaluated by quantitative RT-PCR, treatment with IFN-α (100 IU/ml) or IFN-β (100 IU/ml) inhibited the expression of IGF-II mRNA (−42% and −65%, respectively, both P < 0.001), whereas IGF-I receptor mRNA was significantly upregulated by IFN-α (+28%, P < 0.001) and downregulated by IFN-β (−47%, P < 0.001). Immunoreactive IGF-II concentration decreased in the conditioned medium during IFN-α (−16%, P < 0.05) and IFN-β (−69%, P < 0.001) treatment. Additionally, IGF-I receptor bioactivity was reduced (−54%) after IFN-β treatment. Scatchard analysis of 125I-labeled IGF-I binding to cell membrane of BON cells revealed a dramatic suppression of maximum binding capacity only in the presence of IFN-β. Finally, the proapoptotic activity of IFN-β was partially counteracted by the coadministration of IGF-I and IGF-II (both at 50 nM). In conclusion, these data demonstrate that the IGF system has an important role in autocrine/paracrine growth of BON cells. The more potent antitumor activity of IFN-β compared with IFN-α could be explained by several effects on this system: 1) both IFNs inhibit the transcription of IGF-II, but the suppression is significantly higher after IFN-β than IFN-α and 2) only IFN-β inhibits the expression of IGF-I receptor.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.