Machine learning is one of the break-through technologies of the modern digital world. It's applications are found in various research domain such as medicine, image processing, production and manufacturing, aviation and autonomics and many more. To efficiently run a machine, it's maintenance and its monitoring automation system play a key role. The major problem we are targetting is to overcome the lack of an automation system which can give an accuracy rate of the production machine at a given instance of time. Also, the important energy meter parameters required to make power report in an automation system for addressing the production issues, at a given interval of time, were also not recorded. Thus in this paper, we describe how machine learning techniques are used for prediction of the accuracy of running production machine. To address these issues, we have used supervised machine learning technique of Binary decision tree using CART method and for power report, while the data is fetched using RS232 to RS485 convertor via Modbus communication protocol. Using CART we have predicted the machine accuracy at a given time with specific energy meter readings as its input features. This paper discusses the problem definition identified, data analysis of energy meter data and it's fetching and at the end ML techniques applied to predict the accuracy of running production machine. In the end, we prepare various power reports of the different machines from the fetched parameters as well as produce a graphical warning of deteriorating performance of the machine at a given instance of the time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.