Designing practical security systems for the smart home is challenging without the knowledge of realistic home usage. This paper describes the design and implementation of H lion, a framework that generates natural home automation scenarios by identifying the regularities in user-driven home automation sequences, which are in turn generated from routines created by end-users. Our key hypothesis is that smart home event sequences created by users exhibit inherent semantic patterns, or naturalness that can be modeled and used to generate valid and useful scenarios. To evaluate our approach, we first empirically demonstrate that this naturalness hypothesis holds, with a corpus of 30,518 home automation events, constructed from 273 routines collected from 40 users. We then demonstrate that the scenarios generated by H lion seem valid to end-users, through two studies with 16 external evaluators. We further demonstrate the usefulness of H lion's scenarios by addressing the challenge of policy specification, and using H lion to generate 17 security/safety policies with minimal effort. We distill 16 key findings from our results that demonstrate the strengths of our approach, surprising aspects of home automation, as well as challenges and opportunities in this rapidly growing domain.
Home automation platforms provide a new level of convenience by enabling consumers to automate various aspects of physical objects in their homes. While the convenience is beneficial, security flaws in the platforms or integrated third-party products can have serious consequences for the integrity of a user's physical environment. In this paper we perform a systematic security evaluation of two popular smart home platforms, Google's Nest platform and Philips Hue, that implement home automation "routines" (i.e., trigger-action programs involving apps and devices) via manipulation of state variables in a centralized data store. Our semi-automated analysis examines, among other things, platform access control enforcement, the rigor of non-system enforcement procedures, and the potential for misuse of routines. This analysis results in ten key findings with serious security implications. For instance, we demonstrate the potential for the misuse of smart home routines in the Nest platform to perform a lateral privilege escalation, illustrate how Nest's product review system is ineffective at preventing multiple stages of this attack that it examines, and demonstrate how emerging platforms may fail to provide even bare-minimum security by allowing apps to arbitrarily add/remove other apps from the user's smart home. Our findings draw attention to the unique security challenges of platforms that execute routines via centralized data stores, and highlight the importance of enforcing security by design in emerging home automation platforms.
Home automation platforms enable consumers to conveniently automate various physical aspects of their homes. However, the security flaws in the platforms or integrated third-party products can have serious security and safety implications for the user’s physical environment. This article describes our systematic security evaluation of two popular smart home platforms, Google’s Nest platform and Philips Hue, which implement home automation “routines” (i.e., trigger-action programs involving apps and devices) via manipulation of state variables in a centralized data store . Our semi-automated analysis examines, among other things, platform access control enforcement, the rigor of non-system enforcement procedures, and the potential for misuse of routines, and it leads to 11 key findings with serious security implications. We combine several of the vulnerabilities we find to demonstrate the first end-to-end instance of lateral privilege escalation in the smart home, wherein we remotely disable the Nest Security Camera via a compromised light switch app. Finally, we discuss potential defenses, and the impact of the continuous evolution of smart home platforms on the practicality of security analysis. Our findings draw attention to the unique security challenges of smart home platforms and highlight the importance of enforcing security by design.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.