On 7 Feb 2021, a catastrophic mass flow descended the Ronti Gad, Rishiganga, and Dhauliganga valleys in Chamoli, Uttarakhand, India, causing widespread devastation and severely damaging two hydropower projects. Over 200 people were killed or are missing. Our analysis of satellite imagery, seismic records, numerical model results, and eyewitness videos reveals that ~27x106 m3 of rock and glacier ice collapsed from the steep north face of Ronti Peak. The rock and ice avalanche rapidly transformed into an extraordinarily large and mobile debris flow that transported boulders >20 m in diameter, and scoured the valley walls up to 220 m above the valley floor. The intersection of the hazard cascade with downvalley infrastructure resulted in a disaster, which highlights key questions about adequate monitoring and sustainable development in the Himalaya as well as other remote, high-mountain environments.
Abstract. The number of deaths from landslides in Nepal has been increasing dramatically due to a complex combination of earthquakes, climate change, and an explosion of informal road construction that destabilizes slopes during the rainy season. This trend will likely rise as development continues, especially as China's Belt and Road Initiative seeks to construct three major trunk roads through the Nepali Himalaya that adjacent communities will seek to tie in to with poorly constructed roads. To determine the effect of these informal roads on generating landslides, we compare the distance between roads and landslides triggered by the 2015 Gorkha earthquake with those triggered by monsoon rainfalls, as well as a set of randomly located landslides to determine if the spatial correlation is strong enough to further imply causation. If roads are indeed causing landslides, we should see a clustering of rainfall-triggered landslides closer to the roads that accumulate and focus the water that facilitates failure. We find that in addition to a concentration of landslides in landscapes with more developed, agriculturally viable soils, that the rainfall-triggered landslides are more than twice as likely to occur within 100 m of a road than the landslides generated by the earthquake. The oversteepened slopes, poor water drainage and debris management provide the necessary conditions for failure during heavy monsoonal rains. Based on these findings, geoscientists, planners and policymakers must consider how road development affects the physical (and ecological), socio-political and economic factors that increase risk in exposed communities, alongside ecologically and financially sustainable solutions such as green roads.
A B S T R A C TRural transportation networks are highly susceptible to geohazards such as earthquakes and landslides. Indirect losses can be severe because the breakdown of a transportation network aggravates rescue, supply, and other recovery activities. The operations and logistics of rural networks that are under seismic risks must be managed using the limited resources specifically in developing countries. We propose a methodology to evaluate road recovery strategies for restoring connectivity after blockages due to earthquakes and earthquake-triggered landslides. This paper gives insight into the recovery process, which can be used by decision-makers for enhancing resilience and supplying immediate relief to rural areas. The proposed framework has four steps: 1) identification of strategies for increasing recovery performance, 2) determination of graph-based metrics to represent network connectivity, 3) applying topology-based and Monte Carlo simulations to each strategy, and 4) analysis of recovery times to compare these resilience-enhancement strategies. The methodology was tested using a case study from Sindhupalchok District, Nepal, a region that was severely affected by the Gorkha earthquake in 2015. The closed road segments and recovery times were determined through field surveys with locals and governmental authorities, and by investigating the intensity of earthquake-triggered landslides. Our results showed that the proposed approach provides information about the recovery behavior of road networks and simplifies the evaluation process. It is robust enough to extend and assess decision-makers' preferences for improving resilience.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.