<p class="MsoNormal" style="text-align: left; margin: 0cm 0cm 0pt; layout-grid-mode: char;" align="left"><span class="text"><span style="font-family: ";Arial";,";sans-serif";; font-size: 9pt;">Detecting the region of a license plate is the key component of the vehicle license plate recognition (VLPR) system. A new method is adopted in this paper to analyze road images which often contain vehicles and extract LP from natural properties by finding vertical and horizontal edges from vehicle region. The proposed vehicle license plate detection (VLPD) method consists of three main stages: (1) a novel adaptive image segmentation technique named as sliding concentric windows (SCWs) used for detecting candidate region; (2) color verification for candidate region by using HSI color model on the basis of using hue and intensity in HSI color model verifying green and yellow LP and white LP, respectively; and (3) finally, decomposing candidate region which contains predetermined LP alphanumeric character by using position histogram to verify and detect vehicle license plate (VLP) region. In the proposed method, input vehicle images are commuted into grey images. Then the candidate regions are found by sliding concentric windows. We detect VLP region which contains predetermined LP color by using HSI color model and LP alphanumeric character by using position histogram. Experimental results show that the proposed method is very effective in coping with different conditions such as poor illumination, varied distances from the vehicle and varied weather.</span></span><span style="font-family: ";Arial";,";sans-serif";; font-size: 9pt;"></span></p>
Autism spectrum disorder (ASD) is a complex and degenerative neuro-developmental disorder. Most of the existing methods utilize functional magnetic resonance imaging (fMRI) to detect ASD with a very limited dataset which provides high accuracy but results in poor generalization. To overcome this limitation and to enhance the performance of the automated autism diagnosis model, in this paper, we propose an ASD detection model using functional connectivity features of resting-state fMRI data. Our proposed model utilizes two commonly used brain atlases, Craddock 200 (CC200) and Automated Anatomical Labelling (AAL), and two rarely used atlases Bootstrap Analysis of Stable Clusters (BASC) and Power. A deep neural network (DNN) classifier is used to perform the classification task. Simulation results indicate that the proposed model outperforms state-of-the-art methods in terms of accuracy. The mean accuracy of the proposed model was 88%, whereas the mean accuracy of the state-of-the-art methods ranged from 67% to 85%. The sensitivity, F1-score, and area under receiver operating characteristic curve (AUC) score of the proposed model were 90%, 87%, and 96%, respectively. Comparative analysis on various scoring strategies show the superiority of BASC atlas over other aforementioned atlases in classifying ASD and control.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.