Triple negative breast cancer (TNBC) is a recalcitrant malignancy with no available targeted therapy. Off target effects and poor bioavailability of the FDA approved anti-obesity drug orlistat hinder its clinical translation as a repurposed new drug against TNBC. Here we demonstrate a newly engineered drug formulation for packaging orlistat tailored to TNBC treatment. We synthesized TNBC-specific folate receptor targeted micellar nanoparticles (NPs) carrying orlistat, which improved the solubility (70-80 μg/ml) of this water insoluble drug. The targeted NPs also improved the delivery and bioavailability of orlistat to MDA-MB-231 cells in culture and to tumor xenografts in nude mouse model. We prepared HEA-EHA copolymer micellar NPs by copolymerization of 2-hydroxyethylacrylate (HEA) and 2-ethylhexylacrylate (EHA), and functionalized them with folic acid and an imaging dye. Fluorescence activated cell sorting (FACS) analysis of TNBC cells indicated a dose dependent increase in apoptotic populations in cells treated with free orlistat, orlistat NPs, and folate-receptor targeted Fol-HEA-EHA-orlistat NPs in which Fol-HEA-EHA-orlistat NPs showed significantly higher cytotoxicity than free orlistat. In vitro analysis data demonstrated significant apoptosis at nanomolar concentrations in cells activated through caspase 3 and PARP inhibition. In vivo analysis demonstrated significant antitumor effects in living mice after targeted treatment of tumors, and confirmed by fluorescence imaging. Moreover, Folate receptor targeted Fol-DyLight747-orlistat NPs treated mice exhibited significantly higher reduction in tumor volume compared to control group. Taken together, these results indicate that orlistat packaged in HEA-b-EHA micellar NPs is a highly promising new drug formulation for TNBC therapy.
Clinically used bio-based tissue sealants bring in the risk of animal-borne infections, non-degradability, allergic reactions, tissue compression, tissue necrosis, and poor wet adhesion. Motivated by these unsatisfactory properties of existing tissue sealants, herein, we designed a library of solvent-and initiator-free hydrophobic musselinspired degradable tissue adhesives that can stick and seal the epidermis, pericardium, and Glisson's capsule under physiologically relevant wet conditions. By varying the molar ratio of the functional groups, we obtained polyester adhesive sealants with similar surface energy and varying viscosity. The careful examination of the wetting behavior of these polyester adhesive sealants on tissue surfaces showed that the polyester adhesive sealant with lower viscosity has higher intrinsic work of adhesion, which allowed them to adhere to strongly hydrated surfaces such as pericardium and Glisson's capsule. Because of the lower intrinsic work of adhesion, the polyester adhesive sealant with higher viscosity only adhered to the relatively hydrophobic surface (epidermis). The strong wet adhesion to tissue surfaces, cell-compatibility, hydrolytic degradability, and radical scavenging nature of these polyester adhesive sealants make them potential candidates for wound closure procedures.
Pressure-sensitive
adhesives (PSAs) such as sticky notes and labels
are a ubiquitous part of modern society. PSAs with a wide range of
peel adhesion strength are designed by tailoring the bulk and surface
properties of the adhesive. However, designing an adhesive with strong
initial adhesion but showing an on-demand decrease in adhesion has
been an enduring challenge in the design of PSAs. To address this
challenge, we designed alkoxyphenacyl-based polyurethane (APPU) PSAs
that show a photoactivated increase and decrease in peel strength.
With increasing time of light exposure, the failure mode of our PSAs
shifted from cohesive to adhesive failure, providing residue-free
removal with up to 83% decrease in peel strength. The APPU-PSAs also
adhere to substrates submerged underwater and show a similar photoinduced
decrease in adhesion strength.
Hybrid nanoparticle based on quantum dots and dye labeled PNIPAM shows ratiometric changes in fluorescence emission upon temperature cycling between 25 °C and 45 °C.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.