Large vessel occlusion has a disproportionately large contribution to overall mortality and morbidity from stroke. The Society of Vascular and Interventional Neurology in the year 2016 announced the launch of Mission Thrombectomy 2020 (MT2020), with the aim of increasing access to stroke thrombectomy globally. Despite 4 years since the start of MT2020, India is falling short in acute stroke therapy including thrombolysis and mechanical thrombectomy (MT). Access to timely MT leads to substantial mitigation of adverse stroke outcomes. This in turn leads to an enormous health benefit in that population. MT as a treatment is unevenly and unfairly distributed and increasing access to it is in need of strategies targeting political, economic, and environmental factors. Such strategies are slowly being adopted. In this article, we attempt to look at the major hurdles we face in improving acute stroke care in our country and we also explore options to address them.
Cerebral venous thrombosis (CVT) is a rare clinical entity, with clinical presentations extending from headache and seizures to coma and death. For adults developing progressive neurological worsening despite adequate medical management, endovascular thrombolysis and/or mechanical thrombectomy may be considered as treatment options. We present one such patient with CVT who developed seizures and slipped into a coma, despite best medical management. A large-bore aspiration catheter was used as a standalone system for the endovascular procedure. The venous sinuses were successfully re-canalized. The patient was discharged a week later with a modified Rankin scale of 2. Studies show that endovascular thrombolysis used alone or in conjunction with thrombectomy for CVT has a higher risk of hemorrhagic complications. If we were to use mechanical thrombectomy devices (that are specifically designed for intracranial clot retrieval) as a stand-alone system, we would probably have better clinical outcomes with a lower risk of hemorrhagic complications.
Introduction: Precision medicine aims to focus on meeting patient requirements accurately, optimizing patient outcomes, and reducing under-/overdiagnosis and therapy. We aim to offer a fresh perspective on accuracy driven “age-old precision medicine” and illustrate how newer case-based blended learning ecosystems (CBBLE) can strengthen the bridge between age-old precision approaches with modern technology and omics-driven approaches. Methodology: We present a series of cases and examine the role of precision medicine within a “case-based blended learning ecosystem” (CBBLE) as a practicable tool to reduce overdiagnosis and overtreatment. We illustrated the workflow of our CBBLE through case-based narratives from global students of CBBLE in high and low resource settings as is reflected in global health. Results: Four micro-narratives based on collective past experiences were generated to explain concepts of age-old patient-centered scientific accuracy and precision and four macro-narratives were collected from individual learners in our CBBLE. Insights gathered from a critical appraisal and thematic analysis of the narratives were discussed. Discussion and conclusion: Case-based narratives from the individual learners in our CBBLE amply illustrate their journeys beginning with “age-old precision thinking” in low-resource settings and progressing to “omics-driven” high-resource precision medicine setups to demonstrate how the approaches, used judiciously, might reduce the current pandemic of over-/underdiagnosis and over-/undertreatment.
Introduction: Precision medicine aims to focus on meeting patient requirements accurately, optimizing patient outcomes, and reducing under-/overdiagnosis and therapy. We aim to offer a fresh perspective on accuracy driven "age-old precision medicine" and illustrate how newer case-based blended learning ecosystems (CBBLE) can strengthen the bridge between age-old precision approaches with modern technology and omics-driven approaches. Methodology: We present a series of cases and examine the role of precision medicine within a "case-based blended learning ecosystem" (CBBLE) as a practicable tool to reduce overdiagnosis and overtreatment. We illustrated the workflow of our CBBLE through case-based narratives from global students of CBBLE in high and low resource settings as is reflected in global health. Results: Four micro-narratives based on collective past experiences were generated to explain concepts of age-old patient-centered scientific accuracy and precision and four macro-narratives were collected from individual learners in our CBBLE. Insights gathered from a critical appraisal and thematic analysis of the narratives were discussed. Discussion and conclusion: Case-based narratives from the individual learners in our CBBLE amply illustrate their journeys beginning with "age-old precision thinking" in low-resource settings and progressing to "omics-driven" high-resource precision medicine setups to demonstrate how the approaches, used judiciously, might reduce the current pandemic of over-/underdiagnosis and over-/undertreatment.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.