Tuberculosis (TB) is one of the major public health concerns in Assam, a remote state located in the northeastern (NE) region of India. The present study was undertaken to explore the circulating genotypes of Mycobacterium tuberculosis complex (MTBC) in this region. A total of 189 MTBC strains were collected from smear positive pulmonary tuberculosis cases from different designated microscopy centres (DMC) from various localities of Assam. All MTBC isolates were cultured on Lowenstein-Jensen (LJ) media and subsequently genotyped using spoligotyping and 24-loci mycobacterial interspersed repetitive units-variable number of tandem repeats (MIRU-VNTR) typing. Spoligotyping of MTBC isolates revealed 89 distinct spoligo patterns. The most dominant MTBC strain belonged to Beijing lineage and was represented by 35.45% (n = 67) of total isolates, followed by MTBC strains belonging to Central Asian-Delhi (CAS/Delhi) lineage and East African Indian (EAI5) lineage. In addition, in the present study 43 unknown spoligo patterns were detected. The discriminatory power of spoligotyping was found to be 0.8637 based on Hunter Gaston Discriminatory Index (HGDI). On the other hand, 24-loci MIRU-VNTR typing revealed that out of total 189 MTBC isolates from Assam 185 (97.9%) isolates had unique MIRU-VNTR profiles and 4 isolates grouped into 2 clusters. Phylogenetic analysis of 67 Beijing isolates based on 24-loci MIRU-VNTR typing revealed that Beijing isolates from Assam represent two major groups, each comprising of several subgroups. Neighbour-Joining (NJ) phylogenetic tree analysis based on combined spoligotyping and 24-loci MIRU-VNTR data of 78 Non-Beijing isolates was carried out for strain lineage identification as implemented by MIRU-VNTRplus database. The important lineages of MTBC identified were CAS/CAS1_Delhi (41.02%, n = 78) and East-African-Indian (EAI, 33.33%). Interestingly, phylogenetic analysis of orphan (23.28%) MTBC spoligotypes revealed that majority of these orphan isolates from Assam represent two new sub-clades Assam/EAI and Assam/CAS. The prevalence of multidrug resistance (MDR) in Beijing and Non-Beijing strains was found to be 10.44% and 9.01% respectively. In conclusion, the present study has shown the predominance of Beijing isolates in Assam which is a matter of great concern because Beijing strains are considered to be ecologically more fit enabling wider dissemination of M. tuberculosis. Other interesting finding of the present study is the discovery of two new clades of MTBC isolates circulating in Assam. More elaborate longitudinal studies are required to be undertaken in this region to understand the transmission dynamics of MTBC.
The present study evaluates the hypothesis, that glucose is essential for steroidogenesis and inadequate supply of glucose to the testis may be responsible for decline in steroidogenesis in mice during aging. Mice of different age groups (birth, weaning, puberty, reproductively active, and senescence) were utilized for this study. The changes in glucose, glucose transporter (GLUT), and insulin receptor (IR) level in the testis were evaluated and compared with the testicular steroidogenic parameters such as steroidogenic acute regulatory protein (StAR), 3β-hydroxy steroid dehydrogenase (3β-HSD) and circulating testosterone levels. The result showed significant correlation between changes in GLUT 8 and glucose levels with changes in StAR level in the testis and circulating testosterone level in the mice from birth to senescence. Immunohistochemical analysis showed intense immunostaining of GLUT 8 and IR in the interstitial cells, most likely Leydig cells, in testis of pubertal and reproductively active mice suggesting their relevance in steroidogenesis. The in vitro study showed a significant positive correlation between luteinizing hormone (LH)-induced increase in GLUT 8 and StAR (r = 0.82; P< 0.05) proteins level in the testes with increase in testosterone (r = 0.97; P < 0.05) synthesis of reproductively active mice. This study also showed increased release of lactate with increased uptake of glucose by the testis. Further, intra-testicular treatment of 2-deoxy glucose, to reproductively active mice caused a significant decrease in 3β-HSD enzyme activity in the testis. Based on these findings, it may be concluded that the changes in glucose level either directly or indirectly lead to changes in testicular steroidogenesis during aging.
Breast cancer (BC) is the second most common cancer in women. In the North Eastern Region (NER) of India, BC is emerging as an important concern as evidenced by the data available from population and hospital-based cancer registries. Studies on genetic susceptibility to BC are important to understand the increase in the incidence of BC in NER. The present case control study was conducted to investigate the association between tumour suppressor gene TP53 codon 72 polymorphism and innate immune pathway gene TLR2∆22 (-196-174) polymorphism with BC in females of NER of India for the identification of novel biomarker of BC. Four hundred sixty-two histopathologically confirmed BC cases from four states of NER of India, and 770 healthy controls were included by organizing community surveys from the neighbourhood of cases. In our study, no significant association between TP53 codon 72 polymorphisms and the risk of BC was found. However, our study has shown that TP53 codon 72 polymorphism is an important effect modifier. In the present study it was found that females carrying 22 base-pair deletion in the promoter region of their TLR2 gene had two times (AOR= 2.18, 95 % CI 1.13-4.21, p=0.019 in dominant model; AOR= 2.17, 95 % CI 1.09-4.34, p=0.027 in co-dominant model) increased risk of BC whwn they also carry proline allele at codon 72 of their TP53 gene.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.