Switched capacitor multilevel inverter (SCMLI) with reduced components is attractive for higher number of voltage levels due to less implementation complexity and low cost. In this study, a new family of hybrid SCMLI for high frequency power distribution system is presented to eliminate the intermediate power conversion. Firstly, a five-level SCMLI employing a single voltage source is proposed, which is further extended to nine-level (9L) with its operation. Further extension/enhancement of the proposed 9L-SCMLI for generating a higher number of voltage levels with reduced number of components is achieved on the basis of structural modification. The mathematical analysis for determination of capacitance, power loss analysis and comparative analysis has been provided in detail. A comprehensive comparison with other similar topologies is also provided to highlight the merits of the proposed topology. Simulation and experimental results are discussed for various dynamic load conditions with different output frequencies to validate the suitability of the proposed SCMLI for various high-frequency AC applications, such as renewable energy systems, microgrids, electric vehicles and so on.
In this study, an active neutral point clamped-type boosting switched-capacitor multilevel inverter (SCMLI) with selfvoltage balancing capability is proposed. In the proposed topology, a novel switched capacitor cell is used, which has eight switches and two diodes. The presented topology has reduced power component count with self-boosting and balancing abilities. The distinctive features of the proposed topology are highlighted and benchmarked against other recent 7L-SCMLI topologies. To validate the feasibility of the proposed topology, experimental tests are performed on a 1 kW prototype hardware setup.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.