International audienceIn the forward model [L-band microwave emission of the biosphere (L-MEB)] used in the Soil Moisture and Ocean Salinity level-2 retrieval algorithm, modeling of the roughness effects is based on a simple semiempirical approach using three main “roughness” model parameters: HR, QR, and NR. In many studies, the two parameters QR and NR are set to zero. However, recent results in the literature showed that this is too approximate to accurately simulate the microwave emission of the rough soil surfaces at L-band. To investigate this, a reanalysis of the PORTOS-93 data set was carried out in this paper, considering a large range of roughness conditions. First, the results confirmed that QR could be set to zero. Second, a refinement of the L-MEB soil model, considering values of NR for both polarizations (namely, NRV and NRH), improved the model accuracy. Furthermore, simple calibrations relating the retrieved values of the roughness model parameters HR and (NRH − NRV) to the standard deviation of the surface height were developed. This new calibration of L-MEB provided a good accuracy (better than 5 K) over a large range of soil roughness and moisture conditions of the PORTOS-93 data set. Conversely, the calibrations of the roughness effects based on the Choudhury approach, which is still widely used, provided unrealistic values of surface emissivities for medium or large roughness conditions
Abstract-In this paper, the L-band Microwave Emission of the Biosphere (L-MEB) model used in the Soil Moisture and Ocean Salinity (SMOS) Level 2 Soil Moisture algorithm is calibrated using L-band (1.4 GHz) microwave measurements over a coniferous (Pine) and a deciduous (mixed/Beech) forest. This resulted in working values of the main canopy parameters optical depth (τ ), single scattering albedo (ω), and structural parameters tt(H) and tt(V), besides the soil roughness parameters H R and N R . Using these calibrated values in the forward model resulted in a root mean-square error in brightness temperatures from 2.8 to 3.8 K, depending on data set and polarization. Furthermore, the relationship between canopy optical depth and leaf area index is investigated for the deciduous site. Finally, a sensitivity study is conducted for the focus parameters, temperature, soil moisture, and precipitation. The results found in this paper will be integrated in the operational SMOS Level 2 Soil Moisture algorithm and used in future inversions of the L-MEB model, for soil moisture retrievals over heterogeneous, partly forested areas.Index Terms-Forest, L-band, microwave radiometry, soil moisture, Soil Moisture and Ocean Salinity (SMOS).
The European Plate Observing System (EPOS) is a Research Infrastructure (RI) committed to enabling excellent science through the integration, accessibility, use and re-use of solid Earth science data, research products and services, as well as by promoting physical access to research facilities. This article presents and describes the EPOS RI and introduces the contents of its Delivery Framework. In November 2018, EPOS ERIC (European Research Infrastructure Consortium) has been granted by the European Commission and was established to design and implement a long-term plan for the integration of research infrastructures for solid Earth science in Europe. Specifically, the EPOS mission is to create and operate a highly distributed and sustainable research infrastructure to provide coordinated access to harmonized, interoperable and quality-controlled data from diverse solid Earth science disciplines, together with tools for their use in analysis and modelling. EPOS relies on leading-edge e-science solutions and is committed to open access, thus enabling a step towards the change in multidisciplinary and cross-disciplinary scientific research in Earth science. The EPOS architecture and its Delivery Framework are discussed in this article to present the contributions to open science and FAIR (Findable, Accessible, Interoperable, and Reusable) data management, as well as to emphasize the community building process that supported the design, implementation and construction of the EPOS RI.
In the above paper [1], there is an error in equation ( 7)The last coefficients should be interverted. Instead of H R =[0.9437S D / (0.8865 + 2.2913S D )] 6 it should be read:The equation should be as follows:H R =[0.9437S D /(0.8865S D + 2.2913)] 6 , R 2 =0.93.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.