In the present study, heat transfer coefficient of water-ethanol mixture in the subcooled boiling region is determined in a rectangular conventional channel (Channel size ≥3 mm). When the heat flux and mass flux increase it is observed that heat transfer coefficient increases. But the effect of heat flux is significant when compared with that of mass flux in the subcooled boiling region. It is found that maximum and minimum heat transfer coefficient are observed for mixture with 25% Ethanol volume fraction and 75% Ethanol volume fraction respectively. Wall heat flux partitioning analyses is carried out for mixture with different ethanol volume to determine the contribution of heat flux towards convection, agitation and evaporation. It is also found that heat flux due to convection decreases with increase in heat flux at partial and fully developed nucleate boiling heat regions for all volume fractions. The heat flux determined from the partitioning analysis are lower than the experimentally determined heat flux values at the partial nucleate boiling region and are higher at the fully developed boiling region.
Purpose -The purpose of this paper is to analyse the dynamic behaviour of a three-fluid heat exchanger subjected to a step change in the temperature and velocity of the fluids at the inlet. Design/methodology/approach -The analysis is carried out using the finite element methodology, adopting the Galerkin's approach, using implicit method for transient behaviour.Findings -The effect of step changes in the inlet temperature of hot and cold fluids show that an increase in the fluid inlet temperatures leads to increased outlet temperatures of all fluids and decreased hot fluid effectiveness. The exit temperatures of the fluids do not show any response initially for a certain period of time with the step changes. The time to reach steady state is independent of the step change in inlet temperature of the hot and the cold fluids.Research limitations/implications -The findings of this paper is limited to constant property situations. Practical implications -The findings will be useful in designing control and regulation systems of heat exchangers used in different industrial processes and operations, such as in nuclear reactors, cryogenic and petrochemical process plants. Social implications -The analysis provides a time frame in which the controls and regulation systems work, so that the necessary safety precautions for the people working in the surrounding area can be taken care of. Originality/value -As per the best knowledge of the authors, none of the papers so far have discussed the effect of the change in the inlet temperature and velocity of both the fluids. Performance parameters such as effectiveness, time to reach steady state, etc. have not been studied so far.
The development of heat exchangers from two streams to multi-stream passage arrangement becomes a key problem for heat exchanger design. In this paper, a new design is developed for multi-stream (four-channel) heat exchanger. Multi-channel heat exchangers are extensively used in refrigeration and air conditioning, chemical industries, milk pasteurization, cryogenics industries and energy-recovery applications due to their higher heat transfer rates. The focus of this study is to determine the performance of four-channel counter flow heat exchanger. The hot and cold fluids are assumed to recirculate and exchange heat between them. Finite element model of the heat exchanger is developed based on the detailed geometry and the specific working conditions with the help of which effectiveness of the four-channel heat exchanger is computed. Non-Dimensional parameters are introduced which makes the analysis more versatile. The effectiveness is computed for different values of NTU and heat capacity ratio.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.