The maturation and functional characteristics of human induced pluripotent stem cell (hiPSC)-cortical neurons has not been fully documented. This study developed a phenotypic model of hiPSC-derived cortical neurons, characterized their maturation process, and investigated its application for disease modeling with the integration of multi-electrode array (MEA) technology. Immunocytochemistry analysis indicated early-stage neurons (day 21) were simultaneously positive for both excitatory (vesicular glutamate transporter 1 [VGlut1]) and inhibitory (GABA) markers, while late-stage cultures (day 40) expressed solely VGlut1, indicating a purely excitatory phenotype without containing glial cells. This maturation process was further validated utilizing patch clamp and MEA analysis. Particularly, induced long-term potentiation (LTP) successfully persisted for 1 h in day 40 cultures, but only achieved LTP in the presence of the GABA A receptor antagonist picrotoxin in day 21 cultures. This system was also applied to epilepsy modeling utilizing bicuculline and its correction utilizing the anti-epileptic drug valproic acid.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.