Lung fibrosis is increasingly detected with aging and has been associated with poor outcomes in acute lung injury or infection. However, the molecular programs driving this pro-fibrotic evolution are unclear. Here we profile distal lung samples from healthy human donors across the lifespan. Gene expression profiling by bulk RNAseq reveals both increasing cellular senescence and pro-fibrotic pathway activation with age. Quantitation of telomere length shows progressive shortening with age, which is associated with DNA damage foci and cellular senescence. Cell type deconvolution analysis of the RNAseq data indicates a progressive loss of lung epithelial cells and an increasing proportion of fibroblasts with age. Consistent with this pro-fibrotic profile, second harmonic imaging of aged lungs demonstrates increased density of interstitial collagen as well as decreased alveolar expansion and surfactant secretion. In this work, we reveal the transcriptional and structural features of fibrosis and associated functional impairment in normal lung aging.
Aging is associated with both overt and subclinical lung fibrosis, which increases risk for mortality from viruses and other respiratory pathogens. The molecular programs that induce fibrosis in the aging lung are not well understood. To overcome this knowledge gap, we undertook multimodal profiling of distal lung samples from healthy human donors across the lifespan. Telomere shortening, a cause of cell senescence and fibrosis, was progressive with age in a sample of 86 lungs and was associated with foci of DNA damage. Bulk RNA sequencing confirmed activation of cellular senescence and pro-fibrotic pathways as well as genes necessary for collagen processing with increasing age. These findings were validated in independent datasets for lung and sun-exposed skin, but not other organs including heart, liver and kidney. Cell type deconvolution analysis revealed a progressive loss of lung epithelial cells and an increasing proportion of fibroblasts. Consistent with the observed pro-fibrotic transcriptional profile, second harmonic imaging demonstrated increased density of interstitial collagen in aged human lungs. Furthermore, regions of parenchymal fibrosis were associated with decreased alveolar expansion and surfactant secretion. These findings reveal the transcriptional and structural features of fibrosis and associated physiologic impairments in normal lung aging.
Cx3cr1+ monocyte-derived macrophages (moMacs) are recruited to tissues after injury and are known to have pro-fibrotic effects, but the cell-cell interactions and specific pathways that regulate this polarization and function are incompletely understood. Here we investigate the role of moMac-derived Pdgfa in bleomycin-induced lung fibrosis in mice. Deletion of Pdgfa with Cx3cr1-CreERT2 decreased bleomycin-induced lung fibrosis. Among a panel of in vitromacrophage polarizing stimuli, robust induction of Pdgfa was noted with IL10 in both mouse and human moMacs. Likewise, analysis of single cell data revealed high expression of the receptor IL10RA in moMacs from human fibrotic lungs. Studies with IL10-GFP mice revealed that IL10-expressing cells were increased after injury in mice and co-localized with moMacs. Notably, deletion of IL10ra with Csf1r-Cre : IL10ra fl/fl mice decreased both Pdgfa expression in moMacs and lung fibrosis. Taken together, these findings reveal a novel, IL10-dependent mechanism of macrophage polarization leading to fibroblast activation after injury.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.