A heat pipe is an energy-efficient heat transfer device that relies on evaporation and condensation processes for energy transfer. The main purpose of this study is to simulate a two-phase closed thermosyphon, at moderate temperature, that can be used in industrial applications such as steam power plants. After creating a computational network in the Gambit software, the thermosyphon is simulated in Fluent software using the VOF model. Special oil is employed as the working fluid. Based on the CFD results, the efficiency of the system reaches approximately 96%, and the thermal resistance decreases to 0.54 K/W. The contours of the boiling and evaporation process at differing filling ratios, ranging between 30–90%, is visually investigated and the best performance is obtained for 30% of the filling ratio in thermosyphon. At higher filling ratios, more giant bubbles are generated in thermosyphon, which can attach to the inner wall of the system and reduce the thermal performance. The steady-state condition is obtained 84 s after the start of the process.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.