Background-Long-QT syndrome (LQTS) is an inherited disorder associated with sudden cardiac death. The cytoskeletal protein syntrophin-␣ 1 (SNTA1) is known to interact with the cardiac sodium channel (hNa v 1.5), and we hypothesized that SNTA1 mutations might cause phenotypic LQTS in patients with genotypically normal hNa v 1.5 by secondarily disturbing sodium channel function. Methods and Results-Mutational analysis of SNTA1 was performed on 39 LQTS patients (QTcՆ480 ms) with previously negative genetic screening for the known LQTS-causing genes. We identified a novel A257G-SNTA1 missense mutation, which affects a highly conserved residue, in 3 unrelated LQTS probands but not in 400 ethnic-matched control alleles. Only 1 of these probands had a preexisting family history of LQTS and sudden death with an additional intronic variant in KCNQ1. Electrophysiological analysis was performed using HEK-293 cells stably expressing hNa v 1.5 and transiently transfected with either wild-type or mutant SNTA1 and, in neonatal rat cardiomyocytes, transiently transfected with either wild-type or mutant SNTA1. In both HEK-293 cells and neonatal rat cardiomyocytes, increased peak sodium currents were noted along with a 10-mV negative shift of the onset and peak of currents of the current-voltage relationships. In addition, A257G-SNTA1 shifted the steady-state activation (V h ) leftward by 9.4 mV, whereas the voltage-dependent inactivation kinetics and the late sodium currents were similar to wild-type SNTA1. Conclusion-SNTA1
Background-Dilated cardiomyopathy (DCM) is a primary disease of the heart muscle associated with sudden cardiac death secondary to ventricular tachyarrhythmias and asystole. However, the molecular pathways linking DCM to arrhythmias and sudden cardiac death are unknown. We previously identified a S196L mutation in exon 4 of LBD3-encoded ZASP in a family with DCM and sudden cardiac death. These findings led us to hypothesize that this mutation may precipitate both cytoskeletal and conduction abnormalities in vivo. Therefore, we investigated the role of the ZASP4 mutation S196L in cardiac cytoarchitecture and ion channel biology. Methods and Results-We generated and analyzed transgenic mice with cardiac-restricted expression of the S196L mutation. We also performed cellular electrophysiological analysis on isolated S196L cardiomyocytes and proteinprotein interaction studies. Ten month-old S196L mice developed hemodynamic dysfunction consistent with DCM, whereas 3-month-old S196L mice presented with cardiac conduction defects and atrioventricular block. Electrophysiological analysis on isolated S196L cardiomyocytes demonstrated that the L-type Ca 2ϩ currents and Na ϩ currents were altered. The pull-down assay demonstrated that ZASP4 complexes with both calcium (Ca v 1.2) and sodium (Na v 1.5) channels. Conclusions-Our findings provide new insight into the mechanisms by which mutations of a structural/cytoskeletal protein, such as ZASP, lead to cardiac functional and electric abnormalities. This work represents a novel framework to understand the development of conduction defects and arrhythmias in subjects with cardiomyopathies, including DCM. (Circ Arrhythm Electrophysiol. 2010;3:646-656.)
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.