Prostate cancer (PCa) is driven by multiple genomic alterations, with distinct patterns and clinical implications. Alterations occurring early in the timeline of the disease define core subtypes of localized, treatment-naive PCa. With time, an increase in number and severity of genomic alterations adds molecular complexity and is associated with progression to metastasis. These later events are not random and are influenced by the underlying subclasses. All the subclasses of localized disease initially respond to androgen deprivation therapy (ADT), but with progression to castrate-resistant PCa (CRPC), mechanisms of resistance against ADT shift the molecular landscape. In CRPC, resistance mechanisms largely define the biology and sub-classification of these cancers, while clinical relevance and opportunities for precision therapy are still being defined.
Vitamin B12 (cobalamin) deficiency is prevalent worldwide and causes megaloblastic anemia and neurologic deficits. While the anemia can be treated, the neurologic deficits can become refractive to treatment as the disease progresses. Therefore, timely intervention is critical for a favorable outcome. Moreover, the metabolic basis for the neuro-pathologic changes and the role of cobalamin deficiency in the pathology still remains unexplained. Using a transcobalamin receptor / CD320 knockout mouse that lacks the receptor for cellular uptake of transcobalamin bound cobalamin, we aimed to determine whether cobalamin deficiency in the central nervous system produced functional neurologic deficits in the mouse that would parallel those observed in humans. Our behavioral analyses indicate elevated anxiety and deficits in learning, memory and set-shifting of a spatial memory task in the KO mouse. Consistent with the behavioral deficits, the knockout mouse shows impaired expression of the early phase of hippocampal long-term potentiation along with reduced expression of GluR1, decreased brain mass and a significant reduction in the size of nuclei of the hippocampal pyramidal neurons. Our study suggests that the CD320 knockout mouse develops behavioral deficits associated with cobalamin deficiency and therefore could provide a model to understand the metabolic and genetic basis of neuro-pathologic changes due to cobalamin deficiency.
Vitamin B deficiency causes megaloblastic anemia and neurologic disorder in humans. Gene defects of transcobalamin (TC) and the transcobalamin receptor (TCblR), needed for cellular uptake of the TC-bound B, do not confer embryonic lethality. TC deficiency can produce the hematologic and neurologic complications after birth, whereas TCblR/ gene defects appear to produce mild metabolic changes. Alternate maternofetal transport mechanisms appear to provide adequate B to the fetus. To understand this mechanism, we evaluated the role of TC, TCblR/, and megalin in maternofetal transport of B in a TCblR/-knockout (KO) mouse. Our results showed high expression of TCblR/ in the labyrinth of the placenta, embryonic brain, and spinal column in wild-type (WT) mice. Megalin expression was about the same in both WT and KO mouse visceral yolk sac, brain, and spinal column. Megalin mRNA was down-regulated in the KO embryonic spinal cord (SC) and kidneys. Megalin expression remained unaltered in adult WT and KO mouse brain, SC, and kidneys. Injected dsRed-TC-B and TC-CoB accumulated in the visceral yolk sac of KO mice where megalin is expressed and provides an alternate mechanism for the maternofetal transport of Cbl during fetal development.-Arora, K., Sequeira, J. M., Quadros, E. V. Maternofetal transport of vitamin B: role of TCblR/ and megalin.
In humans, vitamin B12 deficiency causes peripheral and CNS manifestations. Loss of myelin in the peripheral nerves and the spinal cord (SC) contributes to peripheral neuropathy and motor deficits. The metabolic basis for the demyelination and brain disorder is unknown. The transcobalamin receptor–knockout mouse (Cd320−/−) develops cobalamin (Cb1) deficiency in the nervous system, with mild anemia. A decreased S‐adenosylme‐thionine:S‐adenosylhomocysteine ratio and increased methionine were seen in the brain with no significant changes in neurotransmitter metabolites. The structural pathology in the SC presented as loss of myelin in the axonal tracts with inflammation. The sciatic nerve (SN) showed increased nonuniform, internodal segments suggesting demyelination, and remyelination in progress. Consistent with these changes, the Cd320−/− mouse showed an increased latency to thermal nociception. Further, lower amplitude of compound action potential in the SN suggested that the functional capacity of the heavily myelinated axons were preferentially compromised, leading to loss of peripheral sensation. Although the metabolic basis for the demyelination and the structural and functional alterations of the nervous system in Cb1 deficiency remain unresolved, the Cd320−/− mouse provides a unique model to investigate the pathologic consequences of vitamin B12 deficiency.—Arora, K., Sequeira, J. M., Alarcon, J. M., Wasek, B., Arning, E., Bottiglieri, T., Quadros, E. V. Neuropathology of vitamin B12 deficiency in the Cd320−/− mouse. FASEB J. 33, 2563–2573 (2019). http://www.fasebj.org
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.