Pulsed laser ablation in liquid (PLAL) has been established as one of the most efficient and impactful methods for producing pure and ligand-free nanoparticles (NPs). PLAL has successfully been utilized for the synthesis of metal NPs, semiconductor NPs, ceramic NPs, and even nanocomposites. A variety of NPs, including core–shell, nanocubes, nanorods, and many other complex structures, can be synthesized using PLAL. The versatility associated with PLAL has led to the synthesis of NPs that have found applications in the field of biomedicine, sensing technology, energy harvesting, and various industries. Despite all the aforementioned advantages, there has been an ambiguity in terms of conditions/parameters for the nanoparticle synthesis as reported by various research groups. This has led to a perception that PLAL provides little or no control over the properties of the synthesized NPs. The properties of the NPs are reliant on transient dynamics caused due to a high-intensity laser’s interaction with the target material. To understand the process of nanoparticle synthesis and to control the properties of NPs, it is critical to understand the various processes that occur during PLAL. The investigation of PLAL is essential for understanding the dynamical processes involved. However, the investigation techniques employed to probe PLAL present their own set of difficulties, as high temporal as well as spatial resolution is a prerequisite to probe PLAL. Hence, the purpose of this Review is to understand the dynamical processes of PLAL and gain an insight into the various investigation techniques and their data interpretation. In addition to the current challenges, some ways of overcoming these challenges are also presented. The benefits of concurrent investigations with special emphasis on the simultaneous investigation by multiple techniques are summarized, and furthermore, a few examples are also provided to help the readers understand how the simultaneous investigation works.
Investigation of tight focusing of a pulsed laser onto a solid target submerged in distilled water is undertaken in the present study. The study uncovers the formation of multiple bubbles in liquid and its interaction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.