Selective production of input intensive crops in the present scenario have resulted in productivity stagnation or even decline due to excessive usage of chemicals, affecting the farmers economically. Sustainable agriculture is the way to increase agricultural productivity and economic prosperity by protecting all natural resources. It maintains a balance of soil fertility with crop productivity and nutritional quality. The mixed cropping systems followed earlier in different regions according to their tradition, climatic zone, soil and water conditions were climate-smart approaches to sustainable food production based on practical experiences over the years of old generations. The life style changes, imbalance in farming system in last 70 years and demand for more food as well as declining land resources resulted in intensive agriculture. Besides, least returns and less demand of ethnic crops gave more preference to major staple food crops. Barahnaja is a traditional orphan crops based mixed cropping system practiced in Himalayan region due to its sustainability and assured crop harvest during erratic weather conditions. This traditional farming method is an exemplary scientific approach to derive innovations with respect to productivity, quality, plant soil interactions and organic agriculture. The main focus of the review is to substantiate the characteristics of the traditional mixed cropping system by describing the advantages of the system and opportunities for scientific innovation towards new knowledge and sustainability.
In the present work, surface interaction of L-alanine (L-ala) has been investigated on hematite (α-Fe2O3), an abundant mineral on Mars, as a function of time (5 min-48 h), pH (4.0 and 6.20 ± 0.10) and concentration (1 × 10(-3) M-10 × 10(-3) M) with optical absorbance and energy-dispersive spectroscopy (EDS). Adsorption parameters (XM and KL) were calculated from Langmuir adsorption isotherms. L-alanine has maximum affinity (65.31 %) in its zwitterionic form at pH 6.20, while it is only 29.86 % adsorbed at pH 4.0. Possible astrobiological implications are discussed.
Earth is the only known planet bestowed with life. Several attempts have been made to explore the pathways of the origin of life on planet Earth. The search for the chemistry which gave rise to life has given answers related to the formation of biomonomers, and their adsorption on solid surfaces has gained much attention for the catalysis and stabilization processes related to the abiotic chemical evolution of the complex molecules of life. In this communication, surface interactions of L-leucine (Leu) on smectite (SMT) group of clay (viz. bentonite and montmorillonite) and their divalent metal ion (Mg(2+), Ca(2+) and Cu(2+)) incorporated on SMT has been studied to find the optimal conditions of time, pH, and concentration at ambient temperature (298 K). The progress of adsorption was followed spectrophotometrically and further characterized by FTIR, SEM/EDS and XRD. Leu, a neutral/non polar amino acid, was found to have more affinity in its zwitterionic form towards Cu(2+)- exchanged SMT and minimal affinity for Mg(2+)- exchanged SMT. The vibrational frequency shifts of -NH3 (+) and -COO(-) favor Van der Waal's forces during the course of surface interaction. Quantum calculations using density functional theory (DFT) have been applied to investigate the absolute value of metal ion affinities of Leu (Leu-M(2+) complex, M = Mg(2+), Ca(2+), Cu(2+)) with the help of their physico-chemical parameters. The hydration effect on the relative stability and geometry of the individual species of Leu-M(2+) × (H2O)n, (n =2 and 4) has also been evaluated within the supermolecule approach. Evidence gathered from investigations of surface interactions, divalent metal ions affinities and hydration effects with biomolecules may be important for better understanding of chemical evolution, the stabilization of biomolecules on solid surfaces and biomolecular-metal interactions. These results may have implications for understanding the origin of life and the preservation of biomarkers.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.