Interethnic differences were elucidated for several polymorphisms that might be responsible for differential serum drug levels and optimal dose requirement for efficacious treatment.
Purpose The vascular blood flow in brown adipose tissue (BAT) is important for handling triglyceride clearance, increased blood flow and oxygenation. We used dynamic contrast‐enhanced (DCE)‐MRI and fat fraction (FF) imaging for investigating vascular perfusion kinetics in brown and beige adipose tissues with cold exposure or treatment with β3‐adrenergic agonist. Methods FF imaging and DCE‐MRI using gadolinium‐diethylenetriaminepentaacetic acid were performed in interscapular BAT (iBAT) and beige tissues using male Wister rats (n = 38). Imaging was performed at thermoneutral condition and with either cold exposure, treatment with pharmacological agent CL‐316,243, or saline. DCE‐MRI and FF data were co‐registered to enhance the understanding of metabolic activity. Results Uptake of contrast agent in activated iBAT and beige tissues were significantly (P < .05) higher than nonactivated iBAT. The Ktrans and kep increased significantly in iBAT and beige tissues after treatment with either cold exposure or β3‐adrenergic agonist. The FF decreased in activated iBAT and beige tissues. The Ktrans and FF from iBAT and beige tissues were inversely correlated (r = 0.97; r = 0.94). Significant increase in vascular endothelial growth factor expression and Ktrans in activated iBAT and beige tissues were in agreement with the increased vasculature and vascular perfusion kinetics. The iBAT and beige tissues were validated by measuring molecular markers. Conclusion Increased Ktrans and decreased FF in iBAT and beige tissues were in agreement with the vascular perfusion kinetics facilitating the clearance of free fatty acids. The methodology can be extended for the screening of browning agents.
Glycine decarboxylase (GLDC) gene is frequently upregulated in various types of cancer including lung, prostate and brain. It catabolizes glycine to yield 5,10-methylenetetrahydrofolate, an important substrate in one-carbon metabolism for nucleotide synthesis. In this study, we used exon splicing modulating steric hindrance antisense oligonucleotide (shAON) to suppress GLDC expression and investigated its effect on pyruvate metabolism via hyperpolarized carbon-13 magnetic resonance spectroscopy (MRS). The MRS technique allows us to study in vivo metabolic flux in tumor tissues with/without GLDC-shAON intervention. Here, we show that GLDC-shAON treatment is able to suppress lung cancer cell growth and tumorigenesis, both in vitro and in vivo. The carbon-13 MRS results indicated that the conversion of pyruvate into lactate in GLDC-shAON-treated tumor tissues was significantly reduced, when compared with the control groups. This observation corroborated with the reduced activity of lactate dehydrogenase and pyruvate dehydrogenase in GLDC-shAON-treated lung cancer cells and tumor tissues. Glycolysis stress test showed that extracellular acidification rate was significantly suppressed after GLDC-shAON treatment. Besides lung cancer, the antitumor effect of GLDC-shAON was also observed in brain, liver, cervical, and prostate cancer cell lines. Furthermore, it enhanced the treatment efficacy of cisplatin in lung cancer cells. Taken together, our findings illustrate that pyruvate metabolism decreases upon GLDC inhibition, thereby starving cancer cells from critical metabolic fuels.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.