Magnetic resonance imaging (MRI) is widely used medical technology for diagnosis of various tissue abnormalities, detection of tumors. The active development in the computerized medical image segmentation has played a vital role in scientific research. This helps the doctors to take necessary treatment in an easy manner with fast decision making. Brain tumor segmentation is a hot point in the research field of Information technology with biomedical engineering. The brain tumor segmentation is motivated by assessing tumor growth, treatment responses, computer-based surgery, treatment of radiation therapy, and developing tumor growth models. Therefore, computer-aided diagnostic system is meaningful in medical treatments to reducing the workload of doctors and giving the accurate results. This chapter explains the causes, awareness of brain tumor segmentation and its classification, MRI scanning process and its operation, brain tumor classifications, and different segmentation methodologies.
Gait recognition has been considered as the emerging biometric technology for identifying the walking behaviors of humans. The major challenges addressed in this article is significant variation caused by covariate factors such as clothing, carrying conditions and view angle variations will undesirably affect the recognition performance of gait. In recent years, deep learning technique has produced a phenomenal performance accuracy on various challenging problems based on classification. Due to an enormous amount of data in the real world, convolutional neural network will approximate complex nonlinear functions in models to develop a generalized deep convolutional neural network (DCNN) architecture for gait recognition. DCNN can handle relatively large multiview datasets with or without using any data augmentation and fine‐tuning techniques. This article proposes a color‐mapped contour gait image as gait feature for addressing the variations caused by the cofactors and gait recognition across views. We have also compared the various edge detection algorithms for gait template generation and chosen the best from among them. The databases considered for our work includes the most widely used CASIA‐B dataset and OULP database. Our experiments show significant improvement in the gait recognition for fixed‐view, crossview, and multiview compared with the recent methodologies.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.