The tuberal hypothalamus controls life-supporting homeostatic processes, but despite its fundamental role, the cells and signalling pathways that specify this unique region of the CNS in embryogenesis are poorly characterised. Here we combine experimental and bioinformatic approaches in the embryonic chick to show that the tuberal hypothalamus is progressively generated from hypothalamic floor plate-like cells. Fate-mapping studies show that a stream of tuberal progenitors develops in the anterior-ventral neural tube as a wave of neuroepithelial-derived BMP signalling sweeps from anterior to posterior through the hypothalamic floor plate. As later-specified posterior tuberal progenitors are generated, early-specified anterior tuberal progenitors become progressively more distant from these BMP signals and differentiate into tuberal neurogenic cells. Gain- and loss-of-function experiments in vivo and ex vivo show that BMP signalling initiates tuberal progenitor specification, but must be eliminated for these to progress to anterior neurogenic progenitors. ScRNA-Seq profiling shows that tuberal progenitors that are specified after the major period of anterior tuberal specification begin to upregulate genes that characterise radial glial cells. This study provides an integrated account of the development of the tuberal hypothalamus.
The tuberal hypothalamus houses several major hypothalamic nuclei, dozens of transcriptionally distinct cell types, and clinically relevant cell populations implicated in obesity and related metabolic disorders. Building on recent advances in the field, here we draw upon transcriptional, signalling, and fate mapping analyses of chicken embryos and neuroepithelial explants to analyze tuberal hypothalamic development. We show that a wave of BMP signalling sweeps through early floor plate-like progenitors overlying prospective Rathkes pouch as they track anteriorly. The timing of BMP signalling correlates with cell fate, with anterior tuberal specification complete by Hamilton-Hamburger (HH) stage 10 but posterior tuberal progenitors requiring BMPs after this point. scRNA-Seq profiling of FGF10-expressing cells, a proxy for cells with active BMP signalling, through HH8-21 reveals transcriptional differences that may underlie their differing response to BMPs, and the switch from neuroepithelial progenitors to stem-like radial glial cells. This study provides an integrated account of the development of the tuberal hypothalamus.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.