The aim of this study is to identify the exact mechanism(s) by which cytoskeletal structures are modulated during bone resorption. In this study, we have shown the possible role of different actin-binding and signaling proteins in the regulation of sealing ring formation. Our analyses have demonstrated a significant increase in cortactin and a corresponding decrease in L-plastin protein levels in osteoclasts subjected to bone resorption for 18 h in the presence of RANKL, M-CSF, and native bone particles. Time-dependent changes in the localization of L-plastin (in actin aggregates) and cortactin (in the sealing ring) suggest that these proteins may be involved in the initial and maturation phases of sealing ring formation, respectively. siRNA to cortactin inhibits this maturation process but not the formation of actin aggregates. Osteoclasts treated as above but with TNF-␣ demonstrated very similar effects as observed with RANKL. Osteoclasts treated with a neutralizing antibody to TNF-␣ displayed podosome-like structures in the entire subsurface and at the periphery of osteoclast. It is possible that TNF-␣ and RANKL-mediated signaling may play a role in the early phase of sealing ring configuration (i.e. either in the disassembly of podosomes or formation of actin aggregates). Furthermore, osteoclasts treated with alendronate or ␣v reduced the formation of the sealing ring but not actin aggregates. The present study demonstrates a novel mechanistic link between L-plastin and cortactin in sealing ring formation. These results suggest that actin aggregates formed by L-plastin independent of integrin signaling function as a core in assembling signaling molecules (integrin ␣v3, Src, cortactin, etc.) involved in the maturation process.Osteoclasts, the multinucleated and terminally differentiated giant cells, are involved in bone resorption. The adhesion of osteoclasts to the bone during bone resorption leads to the formation of the clear zone, an actin-rich ring-like adhesion zone circumscribing an area of bone resorption. Formation of a clear zone or sealing zone (also known as the sealing ring) has been considered to be a marker of osteoclast activation and is fundamental to the process of osteoclast bone resorption. Sealing ring formation is mediated by the dynamics of the actin cytoskeleton. Distinct pathways and signaling molecules have been shown to play roles in the organization of the sealing ring during bone resorption. Our previous observations in gelsolin null (Gsn Ϫ/Ϫ ) 2 osteoclasts demonstrated that deficiency of this protein blocks podosome assembly and motility. However, the cells still exhibit sealing ring and matrix resorption (1). Therefore, Gsn Ϫ/Ϫ osteoclasts are capable of resorbing bone, but the resorbed areas are small due to the absence of podosomes and the resulting hypomotile nature of osteoclasts (1). Observations in Gsn Ϫ/Ϫ osteoclasts also suggest that the organization of the sealing ring presumably reflect changes in the role of actinbinding proteins. Spatial configurations of actin fil...
Cell surface interaction of CD44 and MMP9 increases migration and invasion of PC3 cells. We show here that stable knockdown of MMP9 in PC3 cells switches CD44 isoform expression from CD44s to CD44v6 which is more glycosylated. These cells showed highly adhesive morphology with extensive cell spreading which is due to the formation of focal adhesions and well organized actin-stress fibers. MMP9 knockdown blocks invadopodia formation and matrix degradation activity as well. However, CD44 knockdown PC3 cells failed to develop focal adhesions and stress fibers; hence these cells make unstable adhesions. A part of the reason for these changes could be caused by silencing of CD44v6 as well. Immunostaining of prostate tissue microarray sections illustrated significantly lower levels of CD44v6 in adenocarcinoma than normal tissue. Our results suggest that interaction between CD44 and MMP9 is a potential mechanism of invadopodia formation. CD44v6 expression may be essential for the protection of non-invasive cellular phenotype. CD44v6 decrease may be a potential marker for prognosis and therapeutics.
We suggest that subscribers photocopy these corrections and insert the photocopies in the original publication at the location of the original article. Authors are urged to introduce these corrections into any reprints they distribute. Secondary (abstract) services are urged to carry notice of these corrections as prominently as they carried the original abstracts.
CD8+ T cells in progressing tumors frequently fail to mount an effective antitumor response often in association with the expression of inhibitory receptors, including programmed cell death-1 (PD-1) and lymphocyte-activation gene 3 (Lag3). Using a lymphoma tumor model, we demonstrate that tumor-infiltrating CD8+ T cells from growing tumors co-express inhibitory receptors and co-stimulatory receptors, including 4-1BB (TNFRSF9) as well as high levels of 2 transcription factors, Eomesodermin (Eomes) and T-bet (Tbx21), critical determinants of CD8+ T cell fate. Immunotherapy with an agonistic anti-4–1-BB antibody altered the ratio of Eomes to T-bet expression in tumor-infiltrating CD8+ T cells by increasing Eomes and decreasing T-bet expression. 4-1BB-agonist immunotherapy was also associated with downregulated expression of the inhibitory receptors PD-1 and Lag3 on tumor-infiltrating CD8+ T cells, a molecular phenotype associated with subsequent attenuation of tumor growth. Furthermore, 4-1BB-agonist immunotherapy failed to effect tumor progression in mice with Eomes deficient T cells. However, upon resumption of tumor growth, tumor-infiltrating CD8+ T cells from treated animals continued to express high levels of Eomes as well as elevated levels of the inhibitory receptors PD-1 and Lag3. Our data suggest that tumor-infiltrating CD8+ T cells are poised between activation and inhibition as dictated by expression of both co-stimulatory receptors and inhibitory receptors and demonstrate that T cell expression of Eomes is necessary, but not sufficient, for efficacious 4-1BB-agonist-mediated immunotherapy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.