Shigella, the etiological agent of dysentery, kills macrophages by inducing apoptosis. Deletion mutants in the invasion invasion plasmid antigen B (ipaB) of Shigella flexneri are not cytotoxic. Here, we localized IpaB to the cytoplasm of macrophages infected with S. flexneri. Purified IpaB induced apoptosis when microinjected into macrophages, indicating that IpaB is sufficient to induce apoptosis. Using a GST‐IpaB fusion protein as a ligand in affinity purification, we isolated four IpaB binding proteins from macrophages which were identified as the precursor and the mature polypeptides of interleukin‐1beta converting enzyme (ICE) or a highly homologous protease. We found that IpaB binds directly to ICE and this enzyme is activated during S. flexneri infection. Furthermore, specific inhibitors of ICE prevented Shigella‐induced apoptosis.
Caspases are intracellular proteases that mediate mammalian cell apoptosis. Caspase-1 (Casp-1) is a unique caspase because it activates the proinflammatory cytokines interleukin (IL)-1beta and IL-18. Shigella flexneri, the etiological agent of bacillary dysentery, induces macrophage apoptosis, which requires Casp-1 and results in the release of mature IL-1beta and IL-18. Here we show that casp-1(-/-) mice infected with S. flexneri do not develop the acute inflammation characteristic of shigellosis and are unable to resolve the bacterial infection. Using casp-1(-/-) mice supplemented with recombinant cytokines and experiments with IL-1beta(-/-) and IL-18(-/-) mice, we show that IL-1beta and IL-18 are both required to mediate inflammation in S. flexneri infections. Together, these data demonstrate the importance of Casp-1 in acute inflammation and show the different roles of its substrates, IL-1beta and IL-18, in this response.
Shigella, the etiological agent of bacillary dysentery, rapidly kills human monocyte-derived macrophages in vitro. Wild-type Shigella flexneri, but not a nonvirulent derivative, induced human macrophage apoptosis as determined by morphology and terminal deoxynucleotidyltransferase-mediated dUTP-biotin nick end labeling (TUNEL). Shigella-mediated macrophage cell death was blocked by the peptide inhibitors of caspases, acetyl-Tyr-Val-Ala-Asp-aldehyde (acetyl-YVAD-CHO) and acetyl-Tyr-Val-Ala-Asp-chloromethylketone (acetyl-YVAD-CMK). Protection from apoptosis by YVAD was observed in monocytes matured in the presence or absence of colony-stimulating factors (CSF) like macrophage-CSF or granulocyte-macrophage-CSF. Furthermore, lipopolysaccharide (LPS) or gamma interferon (IFN-␥) rendered human macrophages partially resistant to Shigella cytotoxicity. Macrophages stimulated with either LPS or IFN-␥ were also protected by YVAD from Shigella-induced cell death. During Shigella infections of human macrophages, interleukin-1 (IL-1) was cleaved to the mature form. IL-1 maturation was severely retarded by YVAD, indicating that IL-1-converting enzyme (ICE; caspase 1) is activated in Shigella-induced apoptosis. The finding that Shigella induces apoptosis in human macrophages by activating ICE supports the hypothesis that the acute inflammation characteristic of shigellosis is initially triggered by apoptotic macrophages which release mature IL-1 during programmed cell death.
Shigella flexneri, an etiological agent of bacillary dysentery, causes apoptosis in vitro. Here we show that it also induces apoptosis in vivo. We were able to quantify the number of apoptotic cells in rabbit Peyer's patches infected with S. flexneri by detecting cells with fragmented DNA. Infection with virulent S. flexneri results in massive numbers of apoptotic cells within the lymphoid follicles. In contrast, neither an avirulent strain nor an avirulent strain capable of colonizing Peyer's patches increases the background level of apoptotic cells. Macrophages, T cells, and B cells are shown to undergo apoptosis in vivo. These results indicate that apoptosis may play a crucial role in the pathogenesis of shigellosis.
Shigellae are the most prevalent etiological agents of dysentery. A crucial step in shigella pathogenesis is the induction of macrophage apoptosis. The invasion plasmid antigen B (IpaB) is necessary and sufficient to induce macrophage programmed cell death. IpaB activates apoptosis by binding to interleukin-1 (IL-1)converting enzyme (ICE) or a highly homologous protease. Here, we show that IpaB is disseminated throughout the cytoplasm of shigella-infected macrophages as detected by both immunofluorescence and immunoelectron microscopy. The cytoplasmic distribution of IpaB requires phagosome escape, and it is specific to IpaB, since lipopolysaccharide, used here as a bacterial marker, remains closely associated with the bacteria. In double-labeling experiments, we show that IpaB and ICE colocalize in the cytoplasm of the macrophage, suggesting that soon after secretion, IpaB binds to ICE to initiate apoptosis and to promote the cleavage of IL-1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.