A Photonic-based multi-wavelength sensor capable of discriminating objects is proposed and demonstrated for intruder detection and identification. The sensor uses a laser combination module for input wavelength signal multiplexing and beam overlapping, a custom-made curved optical cavity for multi-beam spot generation through internal beam reflection and transmission and a high-speed imager for scattered reflectance spectral measurements. Experimental results show that five different wavelengths, namely 473 nm, 532 nm, 635 nm, 670 nm and 785 nm, are necessary for discriminating various intruding objects of interest through spectral reflectance and slope measurements. Objects selected for experiments were brick, cement sheet, cotton, leather and roof tile.
An intruder detection and discrimination sensor with improved optical design is developed using lasers of different wavelength to demonstrate the concept of discrimination over a distance of 6m. A distinctive feature of optics is used to provide additional transverse laser beam scanning. The sample objects used to demonstrate the concept of discrimination over a distance of 6m are leaf, bark, black fabric, PVC, wood and camouflage material. A camouflage material is chosen to illustrate the discrimination capability of the sensor. The sensor utilizes a five-wavelength laser combination module, which sequentially emits identically-polarized laser light beams along one optical path. A cylindrical quasi-optical cavity with improved optical design generates multiple laser light beams for each laser. The intensities of the reflected light beams from the different spots are detected using a high speed area scan image sensor. Object discrimination and detection is based on analyzing the Gaussian profile of reflected light at the different wavelengths. The discrimination between selected objects is accomplished by calculating four different slopes from the objects' reflectance spectra at the wavelengths 473nm, 532nm, 635nm, 670nm and 785nm. Furthermore, the camouflage material, which has complex patterns within a single sample, is also detected and discriminated over a 6m range by scanning the laser beam spots along the transverse direction.
An intruder detection and discrimination sensor with improved optical design is developed using lasers of different wavelengths to demonstrate the concept of discrimination over a distance of 6 m. A distinctive feature of optics is used to provide additional transverse laser beam scanning. The sample objects used to demonstrate the concept of discrimination over a distance of 6 m are leaf, bark, black fabric, PVC, wood and camouflage material. A camouflage material is chosen to illustrate the discrimination capability of the sensor. The sensor utilizes a five-wavelength laser combination module, which sequentially emits identically-polarized laser light beams along one optical path. A cylindrical quasi-optical cavity with improved optical design generates multiple laser light beams for each laser. The intensities of the reflected light beams from the different spots are detected using a high speed area scan image sensor. Object discrimination and detection is based on analyzing the Gaussian profile of reflected light at the different wavelengths. The discrimination between selected objects is accomplished by calculating four different slopes from the objects\u27 reflectance spectra at the wavelengths 473 nm, 532 nm, 635 nm, 670 nm and 785 nm. Furthermore, the camouflage material, which has complex patterns within a single sample, is also detected and discriminated over a 6 m range by scanning the laser beam spots along the transverse direction. -------------------------------------------------------------------------------
A novel method for identifying and discriminating various objects using five different lasers is described. This method uses a laser combination module that allows five laser diodes of different wavelengths to sequentially emit identically polarized light beams through a common aperture, along one optical path. Each laser beam enters a custom-made curved optical cavity for multi-beam spot generation through internal partial beam reflection. The intensity of the reflected light beams from each spot is detected by a high-speed area scan image sensor. Object discrimination based on analyzing the Gaussian profile of reflected laser light at distinguishing wavelengths is demonstrated.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.