Environmental conditions influence the onset and severity of infection and disease. Stressful conditions during winter may weaken immune function and further compromise survival by means of hypothermia, starvation, or shock. To test the hypothesis that animals may use photoperiod to anticipate the onset of seasonal stressors and adjust immune function, we evaluated glucocorticoids and the distribution of blood leukocytes in Siberian hamsters (Phodopus sungorus) exposed to long day lengths (i.e., summer) or short day (SD) lengths (i.e., winter) at baseline and during acute stress. We also investigated the influence of photoperiod and acute stress on a delayed-type hypersensitivity response in the skin. SDs increased glucocorticoid concentrations and the absolute number of circulating blood leukocytes, lymphocytes, T cells, and natural killer cells at baseline in hamsters. During stressful challenges, it appears beneficial for immune cells to exit the blood and move to primary immune defense areas such as the skin, in preparation for potential injury or infection. Acute (2 h) restraint stress induced trafficking of lymphocytes and monocytes out of the blood. This trafficking occurred more rapidly in SDs compared to long days. Baseline delayed-type hypersensitivity responses were enhanced during SDs; this effect was augmented by acute stress and likely reflected more rapid redistribution of leukocytes out of the blood and into the skin. These results suggest that photoperiod may provide a useful cue by which stressors in the environment may be anticipated to adjust the repertoire of available immune cells and increase survival likelihood.
Effective immunoprotection requires rapid recruitment of leukocytes into sites of surgery, wounding, infection, or vaccination. In contrast to immunosuppressive chronic stressors, short-term acute stressors have immunoenhancing effects. Here, we quantify leukocyte infiltration within a surgical sponge to elucidate the kinetics, magnitude, subpopulation, and chemoattractant specificity of an acute stress-induced increase in leukocyte trafficking to a site of immune activation. Mice acutely stressed before sponge implantation showed 200 -300% higher neutrophil, macrophage, natural killer cell, and T cell infiltration than did nonstressed animals. We also quantified the effects of acute stress on lymphotactin-(LTN; a predominantly lymphocyte-specific chemokine), and TNF-␣-(a proinflammatory cytokine) stimulated leukocyte infiltration. An additional stress-induced increase in infiltration was observed for neutrophils, in response to TNF-␣, macrophages, in response to TNF-␣ and LTN, and natural killer cells and T cells in response to LTN. These results show that acute stress initially increases trafficking of all major leukocyte subpopulations to a site of immune activation. Tissue damage-, antigen-, or pathogen-driven chemoattractants subsequently determine which subpopulations are recruited more vigorously. Such stress-induced increases in leukocyte trafficking may enhance immunoprotection during surgery, vaccination, or infection, but may also exacerbate immunopathology during inflammatory (cardiovascular disease or gingivitis) or autoimmune (psoriasis, arthritis, or multiple sclerosis) diseases.chemokine ͉ psychophysiological stress ͉ surgical sponge ͉ wound healing ͉ lymphotactin
Stress is thought to be immunosuppressive but paradoxically exacerbates inflammatory and autoimmune diseases. We initially showed that acute stress enhances skin immunity. Such immunoenhancement could promote immunoprotection in case of wounding, infection or vaccination but could also exacerbate immunopathological diseases. Here we identify the molecular and cellular mediators of the immunoenhancing effects of acute stress. Compared with non-stressed mice, acutely stressed animals showed significantly greater pinna swelling and leukocyte infiltration, and up-regulated macrophage chemoattractant protein-1, macrophage inflammatory protein-3alpha, IL-1alpha, IL-1beta, IL-6, tumor necrosis factor-alpha and IFN-gamma, but not IL-4 gene expression at the site of primary antigen exposure. Stressed animals also showed enhanced maturation and trafficking of dendritic cells (DCs) from skin to lymph nodes (LNs), higher numbers of activated macrophages in skin and LNs, increased T cell activation in LNs, and enhanced recruitment of surveillance T cells to skin. These findings show that important interactive components of innate (DCs and macrophages) and adaptive (surveillance T cells) immunity are mediators of the stress-induced enhancement of a primary immune response. Such enhancement during primary immunization may induce a long-term increase in immunologic memory resulting in subsequent augmentation of the immune response during secondary antigen exposure. Thus, the evolutionarily adaptive fight-or-flight stress response may protectively prepare the immune system for impending danger (e.g. infection and wounding by a predator), but may also contribute to stress-induced exacerbation of inflammatory and autoimmune diseases.
It would be extremely beneficial if one could harness natural, endogenous, health-promoting defense mechanisms to fight disease and restore health. The psychophysiological stress response is the most underappreciated of nature's survival mechanisms. We show that acute stress experienced before primary immunization induces a long-lasting increase in immunity. Compared with controls, mice restrained for 2.5 h before primary immunization with keyhole limpet hemocyanin (KLH) show a significantly enhanced immune response when reexposed to KLH 9 mo later. This immunoenhancement is mediated by an increase in numbers of memory and effector helper T cells in sentinel lymph nodes at the time of primary immunization. Further analyses show that the early stress-induced increase in T cell memory may stimulate the robust increase in infiltrating lymphocyte and macrophage numbers observed months later at a novel site of antigen reexposure. Enhanced leukocyte infiltration may be driven by increased levels of the type 1 cytokines, IL-2 and IFN-gamma, and TNF-alpha, observed at the site of antigen reexposure in animals that had been stressed at the time of primary immunization. In contrast, no differences were observed in type 2 cytokines, IL-4 or IL-5. Given the importance of inducing long-lasting increases in immunologic memory during vaccination, we suggest that the neuroendocrine stress response is nature's adjuvant that could be psychologically and/or pharmacologically manipulated to safely increase vaccine efficacy. These studies introduce the novel concept that a psychophysiological stress response is nature's fundamental survival mechanism that could be therapeutically harnessed to augment immune function during vaccination, wound healing, or infection.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.