Now a day some bird species are being found rarely and if found classification of bird species prediction is difficult. Naturally, birds present in various scenarios appear in different sizes, shapes, colors, and angles from human perspective. Besides, the images present strong variations to identify the bird species more than audio classification. Also, human ability to recognize the birds through the images is more understandable. So, this method uses the Caltech-UCSD Birds 200 [CUB-200-2011] dataset for training as well as testing purpose. By using deep convolutional neural network (DCNN) algorithm an image converted into grey scale format to generate autograph by using tensor flow, where the multiple nodes of comparison are generated. These different nodes are compared with the testing dataset and score sheet is obtained from it. After analyzing the score sheet, it can predicate the required bird species by using highest score. Experimental analysis on dataset (i.e., Caltech-UCSD Birds 200 [CUB-200-2011]) shows that algorithm achieves anaccuracy of bird identification between 80% and 90%. The experimental study is done with the Ubuntu 16.04 operating system using a Tensor flow library. KEYWORDS: Caltech-UCSD; grey scale pixels; TensorFlow.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.