SUMMARY Amyotrophic lateral sclerosis (ALS) and frontotemporal dementia (FTD) are age-related neurodegenerative disorders with shared genetic etiologies and overlapping clinical and pathological features. Here we studied a novel ALS/FTD family and identified the P362L mutation in the low complexity domain (LCD) of T-cell-restricted intracellular antigen-1 (TIA1). Subsequent genetic association analyses showed an increased burden of TIA1 LCD mutations in ALS patients compared to controls (P = 8.7×10−6). Postmortem neuropathology of five TIA1 mutations carriers showed a consistent pathological signature with numerous round, hyaline, TAR DNA-binding protein 43 (TDP-43)-positive inclusions. TIA1 mutations significantly increased the propensity of TIA1 protein to undergo phase transition. In live cells, TIA1 mutations delayed stress granule (SG) disassembly and promoted the accumulation of non-dynamic SGs that harbored TDP-43. Moreover, TDP-43 in SGs became less mobile and insoluble. The identification of TIA1 mutations in ALS/FTD reinforces the importance of RNA metabolism and SG dynamics in ALS/FTD pathogenesis.
Improvements in whole genome amplification (WGA) would enable new types of basic and applied biomedical research, including studies of intratissue genetic diversity that require more accurate single-cell genotyping. Here, we present primary template-directed amplification (PTA), an isothermal WGA method that reproducibly captures >95% of the genomes of single cells in a more uniform and accurate manner than existing approaches, resulting in significantly improved variant calling sensitivity and precision. To illustrate the types of studies that are enabled by PTA, we developed direct measurement of environmental mutagenicity (DMEM), a tool for mapping genome-wide interactions of mutagens with single living human cells at base-pair resolution. In addition, we utilized PTA for genome-wide off-target indel and structural variant detection in cells that had undergone CRISPR-mediated genome editing, establishing the feasibility for performing single-cell evaluations of biopsies from edited tissues. The improved precision and accuracy of variant detection with PTA overcomes the current limitations of accurate WGA, which is the major obstacle to studying genetic diversity and evolution at cellular resolution.
Improvements in whole genome amplification (WGA) would enable new types of basic and applied biomedical research, including studies of intratissue genetic diversity that require more accurate single-cell genotyping. Here we present primary template-directed amplification (PTA), a new isothermal WGA method that reproducibly captures >95% of the genomes of single cells in a more uniform and accurate manner than existing approaches, resulting in significantly improved variant calling sensitivity and precision. To illustrate the new types of studies that are enabled by PTA, we developed direct measurement of environmental mutagenicity (DMEM), a new tool for mapping genome-wide interactions of mutagens with single living human cells at base pair resolution. In addition, we utilized PTA for genome-wide off-target indel and structural variant detection in cells that had undergone CRISPR-mediated genome editing, establishing the feasibility for performing single-cell evaluations of biopsies from edited tissues. The improved precision and accuracy of variant detection with PTA overcomes the current limitations of accurate whole genome amplification, which is the major obstacle to studying genetic diversity and evolution at cellular resolution.
The 48 human nuclear receptors (NRs) form a superfamily of transcription factors that regulate major physiological and pathological processes. Emerging evidence suggests that NR crosstalk can fundamentally change our understanding of NR biology, but detailed molecular mechanisms of crosstalk are lacking. Here, we report the molecular basis of crosstalk between the pregnane X receptor (PXR) and constitutive androstane receptor (CAR), where they form a novel heterodimer, resulting in their mutual inhibition. PXR and CAR regulate drug metabolism and energy metabolism. Although they have been broadly perceived as functionally redundant, a growing number of reports suggests a mutual inhibitory relation, but their precise mode of coordinated action remains unknown. Using methods including RNA sequencing, small-angle X-ray scattering and crosslinking mass spectrometry we demonstrate that the mutual inhibition altered gene expression globally and is attributed to the novel PXR–CAR heterodimerization via the same interface used by each receptor to heterodimerize with its functional partner, retinoid X receptor (RXR). These findings establish an unexpected functional relation between PXR, CAR and RXR, change the perceived functional relation between PXR and CAR, open new perspectives on elucidating their role and designing approaches to regulate them, and highlight the importance to comprehensively investigate nuclear receptor crosstalk.
The effects of vitamin A and/or vitamin D deficiency were studied in an Arf −/− BcR-ABL acute lymphoblastic leukemia murine model. Vitamin D sufficient mice died earlier (p = 0.003) compared to vitamin D deficient (VDD) mice. Vitamin A deficient (VAD) mice fared worst with more rapid disease progression and decreased survival. Mice deficient for vitamins A and D (VADD) had disease progression similar to VAD mice. Regulatory T cells, previously shown to associate with poor BCR-ABL leukemia control, were present at higher frequencies among CD4 + splenocytes of vitamin A deficient vs. sufficient mice. In vitro studies demonstrated 1,25-dihydroxyvitamin D (1,25(OH) 2 VD 3) increased the number of BCR-ABL ALL cells only when co-cultured with bone marrow stroma. 1,25(OH) 2 VD 3 induced CXCL12 expression in vivo and in vitro in stromal cells and CXCL12 increased stromal migration and the number of BCR-ABL blasts. Vitamin D plus leukemia reprogrammed the marrow increasing production of collagens, potentially trapping ALL blasts. Vitamin A (all trans retinoic acid, ATRA) treated leukemic cells had increased apoptosis, decreased cells in S-phase, and increased cells in G 0 /G 1. ATRA signaled through the retinoid X receptor to decrease BCR-ABL leukemic cell viability. In conclusion, vitamin A and D deficiencies have opposing effects on mouse survival from BCR-ABL ALL. Vitamin D deficiency (VDD) affects an estimated 1 billion people in the world across all ethnicities and age groups 1-3. VDD is an independent risk factor for mortality in the general population 4 and almost 60% of children with malignant diseases have suboptimal vitamin D (VD 3) levels 5. Likewise, the world health organization (WHO) estimated 250 million preschool children are vitamin A deficient (VAD), and this increases the risk of disease and death from severe infections. VAD and VDD are not limited to developing countries. Rather, a recent study found that among 45 people tested in Memphis, TN for vitamin A and vitamin D levels, only two individuals had sufficient levels of both vitamins 6. Vitamin D is a fat-soluble vitamin that not only regulates calcium absorption and bone metabolism, but can also regulate cell proliferation, differentiation and the immune response. The biologically active form of vitamin D, 1,25(OH) 2 VD 3 , binds to the vitamin D receptor (VDR) that heterodimerizes with the retinoid X receptor (RXR). This complex then binds to VDR-RXR response elements in target genes to regulate transcription. VDR is highly expressed in intestine, kidney and bone, but also in normal and neoplastic hematopoietic cells and mesenchymal stem cells in bone marrow 7. 1,25(OH) 2 VD 3 can modify embryonic hematopoietic stem and progenitor cell production 8. 1,25(OH) 2 VD 3 inhibits proliferation of mouse and human myeloid leukemia cells 9 and stimulates myeloid cell differentiation into mature macrophages. Indeed, mice with acute myeloid leukemia (AML) when treated with analogs of 1,25(OH) 2 VD 3 survived longer than the untreated mice 10. Moreover, vitam...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.