Covalent organic nanosheets (CONs) have emerged as a new class of functional two-dimensional (2D) porous organic polymeric materials with a high accessible surface, diverse functionality, and chemical stability. They could become versatile candidates for targeted drug delivery. Despite their many advantages, there are limitations to their use for target specific drug delivery. We anticipated that these drawbacks could be overturned by judicious postsynthetic modification steps to use CONs for targeted drug delivery. The postsynthetic modification would not only produce the desired functionality, it would also help to exfoliate to CONs as well. In order to meet this requirement, we have developed a facile, salt-mediated synthesis of covalent organic frameworks (COFs) in the presence of p-toluenesulfonic acid (PTSA). The COFs were subjected to sequential postsynthetic modifications to yield functionalized targeted CONs for targeted delivery of 5-fluorouracil to breast cancer cells. This postsynthetic modification resulted in simultaneous chemical delamination and functionalization to targeted CONs. Targeted CONs showed sustained release of the drug to the cancer cells through receptor-mediated endocytosis, which led to cancer cell death via apoptosis. Considering the easy and facile COF synthesis, functionality based postsynthetic modifications, and chemical delamination to CONs for potential advantageous targeted drug delivery, this process can have a significant impact in biomedical applications.
M-Au/TiO2 (M = Ag, Pd, Pt) composites were prepared through a facile one-pot photodeposition synthesis and evaluated for solar water splitting (SWS) with and without a sacrificial agent. The M-Au combination exhibits a dominant role in augmenting the H2 generation activity by forming a bi-metallic system. Degussa P25 was used as a TiO2 substrate to photodeposit Au followed by Au + M (M = Ag/Pd/Pt). The SWS activity of the M-Au/TiO2 was determined through photocatalytic H2 production in the presence of methanol as a sacrificial agent under one sun conditions with an AM1.5 filter. The highest H2 yield was observed for Pt0.5-Au1/TiO2 and was around 1.3 ± 0.07 mmol h(-1) g(-1), with an apparent quantum yield (AQY) of 6.4%. Pt0.5-Au1/TiO2 also demonstrated the same activity for 25 cycles of five hours each for 125 h. Critically, the same Pt0.5-Au1/TiO2 catalyst was active in overall SWS (OSWS) without any sacrificial agent, with an AQY = 0.8%. The amount of Au and/or Pt was varied to obtain the optimum composition and it was found that the Pt0.5-Au1/TiO2 composition exhibits the best activity. Detailed characterization by physico-chemical, spectral and microscopy measurements was carried out to obtain an in-depth understanding of the origin of the photocatalytic activity of Pt0.5-Au1/TiO2. These in-depth studies show that gold interacts predominantly with oxygen vacancies present on titania surfaces, and Pt preferentially interacts with gold for an effective electron-hole pair separation at Pt-Au interfaces and electron storage in metal particles. The Pt in Pt0.5-Au1/TiO2 is electronically and catalytically different from the Pt in Pt/TiO2 and it is predicted that the former suppresses the oxygen reduction reaction.
Nanotube and nanosheet morphologies have been celebrated for their electron transport properties. Present work has been explored to exploit the same by combining 1D TiO2 nanotube (1D‐TN) with 2D reduced graphene oxide (rGO) along with nano gold for visible light sensitization for photocatalytic H2 generation under one sun condition and visible light (λ≥ 400 nm). Vertical and horizontal electron transport in 1D‐TN and rGO, respectively, is combined with the visible light absorption capability of Au nanoparticle. H2 yield (HY) varies between 100 and 655 µmol/g.h with an apparent quantum yield between 0.45 and 3.2 %, respectively, depending on Au/rGO/1D‐TN preparation method and reaction conditions. It has been demonstrated that interfacial contact between rGO/1D‐TN and Au is crucial for high photocatalytic HY. Preparation method influences charge utilization, and hence HY, to a large extent. Nonetheless, the maximum HY reported in the present work is just comparable to HY reported in literature with the most commonly found spherical morphology, and this leads to a question of, is there any real influence of 1D and/or 2D materials, particularly, towards light harvesting applications?
Understanding the conductivity variations induced by compositional changes in sodium super ionic conducting (NASICON) glass materials is highly relevant for applications such as solid electrolytes for sodium (Na) ion batteries. In the research reported in this paper, NASICON-based NCAP glass (Na 2.8 Ca 0.1 Al 2 P 3 O 12 ) was selected as the parent glass. The present study demonstrates the changes in the Ga nuclei) were used. The Raman spectrum revealed that the NCAP glass structure is more analogous to the AlPO 4 mesoporous glass structure. The Ga MAS-NMR spectrum suggests that gallium cations in the NCAGP glass compete with the alumina cations and occupy four (GaO 4 ), five (GaO 5 ) and six (GaO 6 ) coordinated sites. The Raman spectrum of NCAGP glass indicates that sodium cations have also been substituted by gallium cations in the NCAP glass structure. From impedance analysis, the dc conductivity of the NCAP glass ($3.13 Â 10 À8 S cm À1) is slightly decreased with the substitution of gallium ($2.27 Â 10 À8 S cm À1) but considerably decreased with the substitution of boron ($1.46 Â 10 À8 S cm À1 ). The variation in the conductivity values are described based on the structural changes of NCAP glass with the substitution of gallium and boron.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.