This study deals with the synthesis of a gliadin-stabilized gold quantum cluster (AuQC) for the encapsulation of curcumin (CUR) and its targeted delivery to the cancer cell. CUR is an anticancer drug containing a hydrophobic polyphenol derived from the rhizome of Curcuma longa . The utilization of CUR in cancer treatment is limited because of suboptimal pharmacokinetics and poor bioavailability at the tumor site. In order to improve the bioavailability of CUR, we have encapsulated it into AuQCs stabilized by a proline-rich protein gliadin because proline-rich protein has the ability to bind a hydrophobic drug CUR. The encapsulation of CUR into the hydrophobic cavity of the protein was confirmed by various spectroscopic techniques. Compared to CUR alone, the encapsulated CUR was stable against degradation and showed higher pH stability up to pH 8.5. The encapsulation efficiency of CUR in AuQCs was calculated as 98%, which was much higher than the other reported methods. In vitro drug release experiment exhibited a controlled and pH-dependent CUR release over a period of 60 h. The encapsulated CUR-QCs exhibited less toxicity in the normal cell line (L929) and high toxicity in breast cancer (MDA-MB239). Thus, it can be used as a potential material for anticancer therapy and bioimaging.
An intersystem crossing (ISC), the non-radiative transition between two electronic states with different spin multiplicities, is ubiquitous and imperative in molecular photochemistry. The manifestation of a triplet manifold in π-conjugated chromophoric materials has a crucial role in enhancing the efficiency of photofunctional devices. Herein, we explore the triplet-state population in a series of chalcogen-annulated perylene bisimides (O-PBI, S-PBI, and Se-PBI), where the selenium-annulated PBI (Se-PBI) exhibits a near-quantitative triplet quantum yield ( = 94 ± 1%). Annulation of Se in the PBI core results in a drastic decrease in the fluorescence quantum yield ( = 1.5 ± 0.2%) compared to the bare PBI ( = 97.0 ± 1%), indicating the possibility of an efficient non-radiative decay pathway in the Se-PBI motif. Femtosecond and nanosecond transient absorption measurements unambiguously confirmed the ultrafast triplet population in Se-PBI with an ISC rate constant of = 2.39 × 1010 s–1 and the triplet-state decay to the ground state with a time constant of 3.78 μs. A theoretically calculated spin–orbit coupling constant (V SOC) of 122.4 cm–1 employing the SA-CASSCF/NEVPT2 method has rationalized the excited-state dynamics of Se-PBI. By virtue of the poor SOC between the singlet and triplet states, we observed a partial triplet population in S-PBI, whereas ISC is negligible in O-PBI. We demonstrate an increase in the spin–orbit coupling constant ( ≪ < ) and rate constant of ISC ( ≪ < ) across the series of chalcogen-annulated PBIs (O-PBI, S-PBI, and Se-PBI). The heavier chalcogenide PBI (Se-PBI) thus adds to the array of potential organic photoactive materials for the design of efficient solar energy conversion devices.
Eumelanin, a naturally occurring group of heterogeneous polymer/aggregate providing photoprotection of living organisms consists of 5,6-dihydroxyindole (DHI) and 5,6-dihydroxyindole-2-carboxylic acid (DHICA) building blocks. Despite their prevalence in the animal world,...
Diesters are important synthetic tools for many biologically active compounds. There are only few methods known for the synthesis of diesters, however the known methods have their own limitations such as substrate scope and drastic reactions conditions. Carbonylation of diazo compounds using Co2(CO)8 as a carbonyl source and generating ketene finds many useful applications in synthetic chemistry. In this regard, we have utilized the methodology to synthesize diesters via nucleophilic addition of alcohol to the ketene generated from diazo compounds using Co2(CO)8 as a carbonyl source and catalyst, under mild reaction conditions. Both aliphatic and aromatic alcohols with electron withdrawing and donating substituents are well tolerated giving rise to a large number of biologically active diesters in good yield, which is further characterized by standard analytical and spectroscopic techniques.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.