During cortical development, the identity of major classes of long-distance projection neurons is established by the expression of molecular determinants, which become gradually restricted and mutually exclusive. However, the mechanisms by which projection neurons acquire their final properties during postnatal stages are still poorly understood. In this study, we show that the number of neurons co-expressing Ctip2 and Satb2, respectively involved in the early specification of subcerebral and callosal projection neurons, progressively increases after birth in the somatosensory cortex. Ctip2/Satb2 postnatal co-localization defines two distinct neuronal subclasses projecting either to the contralateral cortex or to the brainstem suggesting that Ctip2/Satb2 co-expression may refine their properties rather than determine their identity. Gain- and loss-of-function approaches reveal that the transcriptional adaptor Lmo4 drives this maturation program through modulation of epigenetic mechanisms in a time- and area-specific manner, thereby indicating that a previously unknown genetic program postnatally promotes the acquisition of final subtype-specific features.DOI: http://dx.doi.org/10.7554/eLife.09531.001
The mammalian neocortex is subdivided into cytoarchitectural areas with distinct connectivity, gene expression and neural functions. Areal identity is initially specified by rostrocaudal and mediolateral gene expression gradients in neuroepithelial and radial glial progenitors (the 'protomap'). On further differentiation, distinct sets of gene expression gradients arise in intermediate progenitors and postmitotic neurons, and are necessary to implement areal specification. However, it is still unknown whether postmitotic gene expression gradients can determine areal identity independently of protomap gradients. Here we show, by cell type-restricted genetic loss-and gain-of-function, that high levels of postmitotic COUP-TFI (Nr2f1) expression are necessary and sufficient for the development of sensory (caudal) areal identity. Our data indicate a crucial role for postmitotic patterning genes in areal specification and reveal an unexpected plasticity in this process, which may account for complex and evolutionarily novel structures characteristic of the mammalian neocortex.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.