Now-a-days, Cybersecurity attacks are becoming increasingly sophisticated and presenting a growing threat to individuals, private and public sectors, especially the Denial Of Service attack (DOS) and its variant Distributed Denial Of Service (DDOS). Dealing with these dangerous threats by using traditional mitigation solutions suffers from several limits and performance issues. To overcome these limitations, Machine Learning (ML) has become one of the key techniques to enrich, complement and enhance the traditional security experiences. In this context, we focus on one of the key processes that improve and optimize Machine Learning DOS-DDOS predicting models: DOS-DDOS feature selection process, particularly the wrapper process. By studying different DOS-DDOS datasets, algorithms and results of several research projects, we have reviewed and evaluated the impact on used wrapper strategies, number of DOS-DDOS features, and many commonly used metrics to evaluate DOS-DDOS prediction models based on the optimized DOS-DDOS features. In this paper, we present three important dashboards that are essential to understand the performance of three wrapper strategies commonly used in DOS-DDOS ML systems: heuristic search algorithms, meta-heuristic search and random search methods. Based on this review and evaluation study, we can observe some of wrapper strategies, algorithms, DOS-DDOS features with a relevant impact can be selected to improve the DOS-DDOS ML existing solutions.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.