A comparative study was conducted to evaluate four previously reported methods that proved to have a recovery greater than 80% for the determination of different levels of ochratoxin A (OTA) in green and roasted coffee beans and to select an accurate, sensitive, and less-expensive technique between the existing methods. The results indicated that the Association of Official Analytical Chemists (AOAC) official method for the extraction of OTA in green coffee and determination by high-performance liquid chromatography (HPLC) is recommended as an efficient method for the routine analyses of OTA in green and ground roasted coffee beans. This method proved to be an accurate, sensitive, and less-expensive method that employs routine materials and available equipment. Although the immunoaffinity column/HPLC procedure tested showed a significantly higher percentage than the AOAC recommended method, it is recommended for use in processed coffee beans where low concentrations of OTA may be expected to be detected.
Screening for aflatoxins (Afs), isolation and identification of Aspergillus flavus, and the effect of decaffeination and roasting on the level of contamination in coffee beans are studied. The percent frequency of A. flavus ranged between 4 and 80% in green coffee beans (GCB), whereas in ground roasted coffee beans (GRCB), it ranged between 1 and 71%. Aflatoxins were detected in 76.5 and 54.6% of the infected samples with averages of 4.28 and 2.85 microg/kg of GCB and GRCB, respectively. Roasting was demonstrated to lower the concentration of Afs in GCB. The Afs levels were reduced by approximately 42.2-55.9% depending on the type and temperature of roasting. The highest yields of Afs were detected in the decaffeinated green coffee beans (24.29 microg/kg) and roasted coffee beans (16.00 microg/kg). The growth of A. flavus in liquid medium containing 1 or 2% caffeine was reduced by 50%, and the level of aflatoxin in the medium was undetectable.
The marine soft corals Sarcophyton trocheliophorum crude extracts possessed antimicrobial activity towards pathogenic bacterial strains, i.e. Bacillus cereus, Salmonella typhi, Escherichia coli, Staphylococcus aureus and Pseudomonas aeruginosa. Bioassay-guided fractionation indicated that the antimicrobial effect was due to the presence of terpenoid bioactive derivatives. Further biological assays of the n-hexane fractions were carried out using turbidity assay, inhibition zone assay and minimum inhibitory concentration for investigating the growth-inhibition effect towards the Gram-positive and Gram-negative bacteria. The fractions were screened and the structure of the isolated compound was justified by interpretation of the spectroscopic data, mainly mass spectrometry (GC-MS). The structure was assigned as (5S)-3-[(3E,5S)-5-hydroxy-3-hepten-6-yn-1-yl]-5-methyl-2(5H)-furanone and was effective at concentrations as low as 0.20 mg/mL. The above findings, in the course of our ongoing research on marine products, may implicate that the profound anti-microbial activity of the S. trocheliophorum soft corals, inhabiting the red sea reefs, is attributed to the presence of growth-inhibiting secondary metabolites mainly terpenoids.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.