A metal-ferroelectric-semiconductor (MFS) structure was used as a nonlinear capacitor in a series resonance circuit. The following materials were used as components of the MFS structure: aluminium as the metal electrode, Bi 4 Ti 3 O 12 film as the ferroelectric, and p-type silicon as the semiconductor. The system was driven by a single frequency at suitably chosen amplitudes. Besides the sequences of period-doubling bifurcations which were already observed in the series resonance circuit with a pure ferroelectric capacitor, we found regions with torus-doubling bifurcations by varying the frequency of the driving voltage at suitably high amplitudes. Comparing the behaviour of the series resonance circuit with a pure ferroelectric capacitor and with the MFS structure, we attribute the reason for the new effect of torus doubling to the properties of the ferroelectric-semiconductor boundary layer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.