Purpose The purpose of this study was to examine the prognostic and oxaliplatin predictive value of mismatch repair (MMR) status and common hot spot mutations, which we previously identified in stage II and III colon cancer. Experimental Design Mutations in BRAF, KRAS, NRAS, MET, and PIK3CA were profiled in 2,299 stage II and III colon tumors from National Surgical Adjuvant Breast and Bowel Project (NSABP) clinical trials C-07 (n = 1,836) and C-08 (n = 463) with Type Plex chemistry and mass spectrometry. C-07 tested the worth of adding oxaliplatin to 5-fluorouracil plus leucovorin, and C-08 tested the worth of adding bevacizumab to FOLFOX. Cox proportional hazard models were used to assess prognostic or oxaliplatin predictive value of mutations for tumor recurrence, overall survival (OS), and survival after recurrence (SAR). Results BRAF mutations were associated with MMR-deficient tumors (P < 0.0001), poor OS [HR, 1.46; 95% confidence interval (CI), 1.20–1.79; P S: 0.0002], and poor SAR (HR, 2.31; 95% CI, 1.83–2.95; P < 0.0001). Mutations in KRAS, NRAS, MET, and PIK3CA were not associated with recurrence, OS, or SAR. MMR-deficient tumors were associated with an improved prognosis based on recurrence (HR, 0.48; 95% CI, 0.33–0.70; P < 0.0001). Mutations and MMR status were not predictive for oxaliplatin benefit. Conclusions This study shows that BRAF mutations profiled from stage II and III colon cancer tumors were associated with poor SAR and validates and explains, at least in part, previous observations associating it with poor OS. Profiling of all of these mutations is warranted for future clinical trials testing new targeted therapies that block relevant signaling pathways. Such clinical trials are under development at NSABP.
BackgroundPancreatic cancer is a deadly disease. Discovery of the mutated genes that cause the inherited form(s) of the disease may shed light on the mechanism(s) of oncogenesis. Previously we isolated a susceptibility locus for familial pancreatic cancer to chromosome location 4q32–34. In this study, our goal was to discover the identity of the familial pancreatic cancer gene on 4q32 and determine the function of that gene.Methods and FindingsA customized microarray of the candidate chromosomal region affecting pancreatic cancer susceptibility revealed the greatest expression change in palladin (PALLD), a gene that encodes a component of the cytoskeleton that controls cell shape and motility. A mutation causing a proline (hydrophobic) to serine (hydrophilic) amino acid change (P239S) in a highly conserved region tracked with all affected family members and was absent in the non-affected members. The mutational change is not a known single nucleotide polymorphism. Palladin RNA, measured by quantitative RT-PCR, was overexpressed in the tissues from precancerous dysplasia and pancreatic adenocarcinoma in both familial and sporadic disease. Transfection of wild-type and P239S mutant palladin gene constructs into HeLa cells revealed a clear phenotypic effect: cells expressing P239S palladin exhibited cytoskeletal changes, abnormal actin bundle assembly, and an increased ability to migrate.ConclusionsThese observations suggest that the presence of an abnormal palladin gene in familial pancreatic cancer and the overexpression of palladin protein in sporadic pancreatic cancer cause cytoskeletal changes in pancreatic cancer and may be responsible for or contribute to the tumor's strong invasive and migratory abilities.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.