A new method of probabilistic modelling of polyhedrally contoured sample clouds is presented and applied to statistical reasoning for a real dataset. Various representations of the new class of polyhedral star-shaped distributions are derived and basic properties of the moments as well as characteristic and moment generating functions of these distributions are studied. Along with location-scale transformations, estimating and hypothesis testing are dealt with.
The circle number function is extended here to regular convex polygons. To this end, the radius of the polygonal circle is defined as the Minkowski functional of the circumscribed polygonal disc, and the arc-length of the polygonal circle is measured in a generalized Minkowski space having the rotated polar body as the unit disc.Mathematics Subject Classification. 26B15, 28A50, 28A75, 51M25, 51F99, 52A10, 52A38, 52C05.
In low dimensions, the relatively easily implementable acceptance-rejection method for generating polyhedral convex contoured uniform distributions is compared to more sophisticated particular methods from the literature, and applied to drug combination studies. Based upon a stochastic representation, the method is extended to the general class of polyhedral convex contoured distributions of known dimension. Based upon a geometric measure representation, an algorithm for simulating corresponding probabilities of rather arbitrary random events is derived.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.