Dopaminergic modulation of prefrontal cortical activity is known to affect cognitive functions like working memory. Little consensus on the role of dopamine modulation has been achieved, however, in part because quantities directly relating to the neuronal substrate of working memory are difficult to measure. Here we show that dopamine increases the gain of the frequency-current relationship of layer 5 pyramidal neurons in vitro in response to noisy input currents. The gain increase could be attributed to a reduction of the slow afterhyperpolarization by dopamine. Dopamine also increases neuronal excitability by shifting the input-output functions to lower inputs. The modulation of these response properties is mainly mediated by D1 receptors. Integrate-and-fire neurons were fitted to the experimentally recorded input-output functions and recurrently connected in a model network. The gain increase induced by dopamine application facilitated and stabilized persistent activity in this network. The results support the hypothesis that catecholamines increase the neuronal gain and suggest that dopamine improves working memory via gain modulation.
Over the last decade virtual reality (VR) setups for rodents have been developed and utilized to investigate the neural foundations of behavior. Such VR systems became very popular since they allow the use of state-of-the-art techniques to measure neural activity in behaving rodents that cannot be easily used with classical behavior setups. Here, we provide an overview of rodent VR technologies and review recent results from related research. We discuss commonalities and differences as well as merits and issues of different approaches. A special focus is given to experimental (behavioral) paradigms in use. Finally we comment on possible use cases that may further exploit the potential of VR in rodent research and hence inspire future studies.
GABA (gamma-aminobutyric acid) can mediate inhibition via pre- and post/extrasynaptic GABA receptors. In this paper we demonstrate potentially post/extrasynaptic GABA(B) receptor-dependent tonic inhibition in L2/3 pyramidal cells of rat medial prefrontal cortex (mPFC) in vitro. First, we show via voltage-clamp experiments the presence of a tonic GABA(B) receptor-dependent outward current in these neurons. This GABA(B)ergic current could be induced by ambient GABA when present at sufficient concentrations. To increase ambient GABA levels in the usually silent slice preparation, we amplified network activity and hence synaptic GABA release with a modified artificial cerebrospinal fluid. The amplitude of tonic GABA(B) current was similar at different temperatures. In addition to the tonic GABA(B) current, we found presynaptic GABA(B) effects, GABA(B)-mediated inhibitory postsynaptic currents and tonic GABA(A) currents. Second, we performed current-clamp experiments to evaluate the functional impact of GABA(B) receptor-mediated inhibition in the mPFC. Activating or inactivating GABA(B) receptors led to rightward (reduction of excitability) or leftward (increase of excitability) shifts, respectively, of the input-output function of mPFC L2/3 pyramidal cells without effects on the slope. Finally, we showed in electrophysiological recordings and epifluorescence Ca(2+)-imaging that GABA(B) receptor-mediated tonic inhibition is capable of regulating network activity. Blocking GABA(B) receptors increased the frequency of excitatory postsynaptic currents impinging on a neuron and prolonged network upstates. These results show that ambient GABA via GABA(B) receptors is powerful enough to modulate neuronal excitability and the activity of neural networks.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.