We carried out a test sample study to try to identify errors leading to irreproducibility, including incompleteness of peptide sampling, in LC-MS-based proteomics. We distributed a test sample consisting of an equimolar mix of 20 highly purified recombinant human proteins, to 27 laboratories for identification. Each protein contained one or more unique tryptic peptides of 1250 Da to also test for ion selection and sampling in the mass spectrometer. Of the 27 labs, initially only 7 labs reported all 20 proteins correctly, and only 1 lab reported all the tryptic peptides of 1250 Da. Nevertheless, a subsequent centralized analysis of the raw data revealed that all 20 proteins and most of the 1250 Da peptides had in fact been detected by all 27 labs. The centralized analysis allowed us to determine sources of problems encountered in the study, which include missed identifications (false negatives), environmental contamination, database matching, and curation of protein identifications. Improved search engines and databases are likely to increase the fidelity of mass spectrometry-based proteomics.
SUMMARY Hundreds of effector proteins of the human malaria parasite Plasmodium falciparum constitute a `secretome', carrying a host-targeting (HT) signal, which predicts their export from the intracellular pathogen into the surrounding erythrocyte. Cleavage of the HT signal by a parasite endoplasmic reticulum (ER) protease, plasmepsin V, is the proposed export mechanism. Here we show that the HT signal exports by recognition of the lipid phosphatidylinositol-3-phosphate (PI(3)P) in the ER, prior to and independent of protease action. Secretome HT signals, including those of major virulence determinants bind PI(3)P with nanomolar affinity and amino acid specificities displayed by HT-mediated export. PI(3)P-enriched regions are detected within the parasite's ER, co-localize with endogenous HT signal on ER precursors, which also display high affinity binding to PI(3)P. A related, pathogenic oomycete's HT signal export is dependent on PI(3)P binding, without cleavage by plasmepsin V. Thus PI(3)P in the ER functions in mechanisms of secretion and pathogenesis.
Reprogramming of tumor cell metabolism contributes to disease progression and resistance to therapy, but how this process is regulated on the molecular level is unclear. Here we report that Heat Shock Protein 90 (Hsp90)-directed protein folding in mitochondria controls central metabolic networks in tumor cells, including the electron transport chain, citric acid cycle, fatty acid oxidation, amino acid synthesis, and cellular redox status. Specifically, mitochondrial Hsp90, but not cytosolic Hsp90, binds and stabilizes the electron transport chain Complex II subunit succinate dehydrogenase-B, maintaining cellular respiration under low-nutrient conditions, and contributing to hypoxia-inducible factor-1α-mediated tumorigenesis in patients carrying succinate dehydrogenase-B mutations. Thus, Hsp90-directed proteostasis in mitochondria regulates tumor cell metabolism, and may provide a tractable target for cancer therapy.
Activated platelets shed surface proteins, potentially modifying platelet function as well as providing a source of bioactive fragments. Previous studies have identified several constituents of the platelet sheddome, but the full extent of shedding is unknown. Here we have taken a global approach, analyzing protein fragments in the supernate of activated platelets using mass spectroscopy and looking for proteins originating from platelet membranes. After removing plasma proteins and microparticles, 1048 proteins were identified, including 69 membrane proteins. Nearly all of the membrane proteins had been detected previously, but only 10 had been shown to be shed in platelets. The remaining 59 are candidates subject to confirmation. Based on spectral counts, protein representation in the sheddome varies considerably. As proof of principle, we validated one of the less frequently detected proteins, semaphorin 7A, which had not previously been identified in platelets. Surface expression, cleavage, and shedding of semaphorin 7A were demonstrated, as was its association with ␣-granules. Finally, cleavage of semaphorin 7A and 12 other proteins was substantially reduced by an inhibitor of ADAM17, a known sheddase. These results define a subset of membrane proteins as sheddome candidates, forming the basis for further studies examining the impact of ectodomain shedding on platelet function. (Blood. 2011;117(1): e15-e26)
Infection of human erythrocytes by the apicomplexan malaria parasite Plasmodium falciparum results in endovacuolar uptake of 4 host proteins that reside in erythrocyte detergent-resistant membranes (DRMs). Whether this vacuolar transport reflects selective uptake of host DRM proteins remains unknown. A further complication is that DRMs of vastly different protein and cholesterol contents have been isolated from erythrocytes. Here we show that isolated DRMs containing the highest cholesterol-to-protein ratio have low protein mass. Liquid chromatography, mass spectrometry, and antibodybased studies reveal that the major DRM proteins are band 3, flotillin-1 and -2, peroxiredoxin-2, and stomatin. Band 3 and stomatin, which reflect the bulk mass of erythrocyte DRM proteins, and all tested non-DRM proteins are excluded from the vacuolar parasite. In contrast, flotillin-1 and -2 and 8 minor DRM proteins are recruited to the vacuole. These data suggest that DRM association is necessary but not sufficient for vacuolar recruitment and there is active, vacuolar uptake of a subset of host DRM proteins. Finally, the 10 internalized DRM proteins show varied lipid and peptidic anchors indicating that, contrary to the prevailing model of apicomplexan vacuole formation, DRM association, rather than lipid anchors, provides the preferred criteria for protein recruitment to the malarial vacuole.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.