Lung-function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry genome-wide association meta-analysis of lung function to date, comprising 580,869 participants, we identified 1,020 independent association signals implicating 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies for selected associated variants as well as trait and pathway-specific genetic risk scores to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies.
Lung function impairment underlies chronic obstructive pulmonary disease (COPD) and predicts mortality. In the largest multi-ancestry GWAS meta-analysis of lung function to date, comprising 580,869 participants, 1020 independent association signals identified 559 genes supported by ≥2 criteria from a systematic variant-to-gene mapping framework. These genes were enriched in 29 pathways. Individual variants showed heterogeneity across ancestries, age and smoking groups, and collectively as a genetic risk score (GRS) showed strong association with COPD across ancestry groups. We undertook phenome-wide association studies (PheWAS) for selected associated variants, and trait and pathway-specific GRS to infer possible consequences of intervening in pathways underlying lung function. We highlight new putative causal variants, genes, proteins and pathways, including those targeted by existing drugs. These findings bring us closer to understanding the mechanisms underlying lung function and COPD, and should inform functional genomics experiments and potentially future COPD therapies.
Thyroid hormones play a critical role in regulation of multiple physiological functions and thyroid dysfunction is associated with substantial morbidity. Electronic health records were used to undertake the largest genome-wide association study of thyroid-stimulating hormone (TSH) levels, with a total sample size of 247,107. We identified 158 novel signals, more than doubling the number of known associations with TSH, and implicating 112 putative causal genes, of which 78 were not previously implicated. For the first time, we demonstrate that a polygenic score for TSH was associated with TSH levels in all ancestries in UK Biobank, and strongly predicted age of onset of hypothyroidism and hyperthyroidism in European ancestry participants. We developed pathway-specific genetic risk scores for TSH levels and used these in phenome-wide association studies to identify potential consequences of pathway perturbation. Together, these findings demonstrate the potential utility of genetic associations to inform future therapeutics and risk prediction for thyroid diseases.
Smoking is a leading risk factor for many of the top ten causes of death worldwide. Of the 1.3 billion smokers globally, 80% live in low- and middle-income countries, where the number of deaths due to tobacco use is expected to double in the next decade according to the World Health Organization. Genetic studies have helped to identify biological pathways for smoking behaviours, but have mostly focussed on individuals of European ancestry or living in either North America or Europe. We performed a genome-wide association study of two smoking behaviour traits in 10,558 men of African ancestry living in five African countries and the UK. Eight independent variants were associated with either smoking initiation or cessation at P-value < 5 × 10–6, four being monomorphic or rare in European populations. Gene prioritisation strategy highlighted five genes, including SEMA6D, previously described as associated with several smoking behaviour traits. These results confirm the importance of analysing underrepresented populations in genetic epidemiology, and the urgent need for larger genomic studies to boost discovery power to better understand smoking behaviours, as well as many other traits.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.