Epigenetic mechanisms, which include DNA methylation, a variety of post-translational modifications of histone proteins (acetylation, phosphorylation, methylation, ubiquitination, sumoylation, serotonylation, dopaminylation), chromatin remodeling enzymes, and long non-coding RNAs, are robust regulators of activity-dependent changes in gene transcription. In the brain, many of these epigenetic modifications have been widely implicated in synaptic plasticity and memory formation. Dysregulation of epigenetic mechanisms has been reported in the aged brain and is associated with or contributes to memory decline across the lifespan. Furthermore, alterations in the epigenome have been reported in neurodegenerative disorders, including Alzheimer’s disease. Here, we review the diverse types of epigenetic modifications and their role in activity- and learning-dependent synaptic plasticity. We then discuss how these mechanisms become dysregulated across the lifespan and contribute to memory loss with age and in Alzheimer’s disease. Collectively, the evidence reviewed here strongly supports a role for diverse epigenetic mechanisms in memory formation, aging, and neurodegeneration in the brain.
New therapies to treat pancreatic cancer are direly needed. However, efficacious interventions lack a strong preclinical model that can recapitulate patients’ anatomy and physiology. Likewise, the availability of human primary malignant tissue for ex vivo studies is limited. These are significant limitations in the biomedical device field. We have developed RAG2/IL2RG deficient pigs using CRISPR/Cas9 as a large animal model with the novel application of cancer xenograft studies of human pancreatic adenocarcinoma. In this proof-of-concept study, these pigs were successfully generated using on-demand genetic modifications in embryos, circumventing the need for breeding and husbandry. Human Panc01 cells injected subcutaneously into the ears of RAG2/IL2RG deficient pigs demonstrated 100% engraftment with growth rates similar to those typically observed in mouse models. Histopathology revealed no immune cell infiltration and tumor morphology was highly consistent with the mouse models. The electrical properties and response to irreversible electroporation of the tumor tissue were found to be similar to excised human pancreatic cancer tumors. The ample tumor tissue produced enabled improved accuracy and modeling of the electrical properties of tumor tissue. Together, this suggests that this model will be useful and capable of bridging the gap of translating therapies from the bench to clinical application.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.