Conspectus Enzymes are ubiquitous in living systems. Apart from traditional motor proteins, the function of enzymes was assumed to be confined to the promotion of biochemical reactions. Recent work shows that free swimming enzymes, when catalyzing reactions, generate enough mechanical force to cause their own movement, typically observed as substrate-concentration-dependent enhanced diffusion. Preliminary indication is that the impulsive force generated per turnover is comparable to the force produced by motor proteins and is within the range to activate biological adhesion molecules responsible for mechanosensation by cells, making force generation by enzymatic catalysis a novel mechanobiology-relevant event. Furthermore, when exposed to a gradient in substrate concentration, enzymes move up the gradient: an example of chemotaxis at the molecular level. The driving force for molecular chemotaxis appears to be the lowering of chemical potential due to thermodynamically favorable enzyme–substrate interactions and we suggest that chemotaxis promotes enzymatic catalysis by directing the motion of the catalyst and substrates toward each other. Enzymes that are part of a reaction cascade have been shown to assemble through sequential chemotaxis; each enzyme follows its own specific substrate gradient, which in turn is produced by the preceding enzymatic reaction. Thus, sequential chemotaxis in catalytic cascades allows time-dependent, self-assembly of specific catalyst particles. This is an example of how information can arise from chemical gradients, and it is tempting to suggest that similar mechanisms underlie the organization of living systems. On a practical level, chemotaxis can be used to separate out active catalysts from their less active or inactive counterparts in the presence of their respective substrates and should, therefore, find wide applicability. When attached to bigger particles, enzyme ensembles act as “engines”, imparting motility to the particles and moving them directionally in a substrate gradient. The impulsive force generated by enzyme catalysis can also be transmitted to the surrounding fluid and molecular and colloidal tracers, resulting in convective fluid pumping and enhanced tracer diffusion. Enzyme-powered pumps that transport fluid directionally can be fabricated by anchoring enzymes onto a solid support and supplying the substrate. Thus, enzyme pumps constitute a novel platform that combines sensing and microfluidic pumping into a single self-powered microdevice. Taken in its entirety, force generation by active enzymes has potential applications ranging from nanomachinery, nanoscale assembly, cargo transport, drug delivery, micro- and nanofluidics, and chemical/biochemical sensing. We also hypothesize that, in vivo, enzymes may be responsible for the stochastic motion of the cytoplasm, the organization of metabolons and signaling complexes, and the convective transport of fluid in cells. A detailed understanding of how enzymes convert chemical energy to directional mechanical force ...
Nonmechanical nano/microscale pumps that provide precise control over flow rate without the aid of an external power source and that are capable of turning on in response to specific analytes in solution are needed for the next generation of smart micro- and nanoscale devices. Herein, a self-powered chemically driven silver micropump is reported that is based on the two-step catalytic decomposition of hydrogen peroxide, H2O2. The pumping direction and speed can be controlled by modulating the solution pH, and modeling and theory allow for the kinetics of the reaction steps to be connected to the fluid velocity. In addition, by changing the pH dynamically using glucose oxidase (GOx)-catalyzed oxidation of glucose to gluconic acid, the direction of fluid pumping can be altered in situ, allowing for the design of a glucose sensor. This work underscores the versatility of catalytic pumps and their ability to function as sensors.
In chemical solutions, the products of catalytic reactions can occupy different volumes compared to the reactants and thus give rise to local density variations in the fluid. These density variations generate solutal buoyancy forces, which are exerted on the fluid and thus “pump” the fluid to flow. Herein, we examine if the reaction-induced pumping accelerates the chemical reaction by transporting the reactants to the catalyst at a rate faster than passive diffusion. Using both simulations and experiments, we show a significant increase in reaction rate when reaction-generated convective flow is present. In effect, through a feedback loop, catalysts speed up reactions not only by lowering the energy barrier but also by increasing the collision frequency between the reactants and the catalyst.
It is usually assumed that enzymes retain their native structure during catalysis. However, the aggregation and fragmentation of proteins can be difficult to detect and sometimes conclusions are drawn based...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.