Wildfire is a natural component of sagebrush (Artemisia spp.) steppe rangelands that induces temporal shifts in plant community physiognomy, ground surface conditions, and erosion rates. Fire alteration of the vegetation structure and ground cover in these ecosystems commonly amplifies soil losses by wind‐ and water‐driven erosion. Much of the fire‐related erosion research for sagebrush steppe has focused on either erosion by wind over gentle terrain or water‐driven erosion under high‐intensity rainfall on complex topography. However, many sagebrush rangelands are geographically positioned in snow‐dominated uplands with complex terrain in which runoff and sediment delivery occur primarily in winter months associated with cold‐season hydrology. Current understanding is limited regarding fire effects on the interaction of wind‐ and cold‐season hydrologic‐driven erosion processes for these ecosystems. In this study, we evaluated fire impacts on vegetation, ground cover, soils, and erosion across spatial scales at a snow‐dominated mountainous sagebrush site over a 2‐year period post‐fire. Vegetation, ground cover, and soil conditions were assessed at various plot scales (8 m2 to 3.42 ha) through standard field measures. Erosion was quantified through a network of silt fences (n = 24) spanning hillslope and side channel or swale areas, ranging from 0.003 to 3.42 ha in size. Sediment delivery at the watershed scale (129 ha) was assessed by suspended sediment samples of streamflow through a drop‐box v‐notch weir. Wildfire consumed nearly all above‐ground live vegetation at the site and resulted in more than 60% bare ground (bare soil, ash, and rock) in the immediate post‐fire period. Widespread wind‐driven sediment loading of swales was observed over the first month post‐fire and extensive snow drifts were formed in these swales each winter season during the study. In the first year, sediment yields from north‐ and south‐facing aspects averaged 0.99–8.62 t ha−1 at the short‐hillslope scale (~0.004 ha), 0.02–1.65 t ha−1 at the long‐hillslope scale (0.02–0.46 ha), and 0.24–0.71 t ha−1 at the swale scale (0.65–3.42 ha), and watershed scale sediment yield was 2.47 t ha−1. By the second year post fire, foliar cover exceeded 120% across the site, but bare ground remained more than 60%. Sediment yield in the second year was greatly reduced across short‐ to long‐hillslope scales (0.02–0.04 t ha−1), but was similar to first‐year measures for swale plots (0.24–0.61 t ha−1) and at the watershed scale (3.05 t ha−1). Nearly all the sediment collected across all spatial scales was delivered during runoff events associated with cold‐season hydrologic processes, including rain‐on‐snow, rain‐on‐frozen soils, and snowmelt runoff. Approximately 85–99% of annual sediment collected across all silt fence plots each year was from swales. The high levels of sediment delivered across hillslope to watershed scales in this study are attributed to observed preferential loading of fine sediments into swale channels by aeolian processes in ...
Long‐term (>20 y) suspended sediment (SS) and particulate organic carbon (POC) records are relatively rare and yet are necessary for understanding linkages between climate, erosion and carbon export. We estimated long‐term (>23 y) SS and POC yields from four nested catchments that ranged from <1 to 54 km2 in area across the Reynolds Creek Experimental Watershed and Critical Zone Observatory (RCEW‐CZO) in southwestern Idaho, USA. We found strong relationships between log10SS and log10POC (R2 = 0.38–0.86) that varied across catchments but remained robust across years, one dry and one of the wettest water years on record. Mean annual SS yields varied from 18 to 89 g SS m−2 y−1 and POC from 0.6 to 11.0 g C m−2 y−1 across the four catchments. Water yield explained much of the temporal variation (72%–85%) in SS and POC yields except in a small, snow‐dominated headwater catchment where it explained 15%–51%. The largest five water years accounted for 69%–84% of the total SS and POC yields in catchments with 24 y records. All catchments had positive slopes (>0) for SS and POC concentration‐discharge (C‐Q) relationships, with large catchments exhibiting greater slopes (0.66–0.97) than smaller ones (0.14–0.16). In addition, most catchments were dominated (80%) by clockwise hysteretic curves. Lack of seasonal exhaustion in the SS‐POC relationships, positive C‐Q and clockwise relations indicated that these systems were transport‐rather than supply limited, and that sediment and POC appeared to be sourced from channel/bank erosion and remobilization. POC yields represent 1%–10% of mean water year net ecosystem exchange depending on elevation; lower elevation catchments may shift from being carbon sinks to sources after accounting for fluvial POC export associated with changes in climate.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.