Recent advances in pharmacological agents have led to successful treatment of a variety of retinal diseases such as neovascular age-related macular degeneration (AMD), diabetic macular oedema (DMO), and retinal vascular occlusions (RVO). These treatments often require repeated drug injections for an extended period of time. To reduce these repeated treatment burdens, minimally invasive drug delivery systems are needed. An ideal therapy should maintain effective levels of drug for the intended duration of treatment following a single application, recognising that a significant number of months of therapy may be required. There are numerous approaches under investigation to improve treatment options. This review will highlight the advantages and limitations of selected drug delivery systems of novel biomaterial implants and depots. The main emphasis will be placed on less invasive, longer acting, sustained release formulations for the treatment of retinal disorders.
To evaluate the in vivo treatment efficacy and biocompatibility of a biodegradable aflibercept-loaded microsphere-hydrogel drug delivery system (DDS) in a laserinduced choroidal neovascularization (CNV) rat model. Methods: Two weeks after CNV induction, animals were randomly assigned into four experimental groups: (1) no treatment, (2) single intravitreal (IVT) injection of blank DDS, (3) bimonthly bolus IVT aflibercept injections, and (4) single IVT injection of aflibercept-DDS. CNV lesion sizes were monitored longitudinally using fluorescence angiography and multi-Otsu thresholding for 6 months. For safety and biocompatibility assessment, an additional three non-CNV animals received a blank DDS injection. Electroretinogram, intraocular pressure, and clinical ophthalmoscopic examinations were performed. Results: The average lesion areas at week 0 (treatment intervention) were (1) 8693 ± 628 μm 2 for no treatment, (2) 8261 ± 709 μm 2 for blank DDS, (3) 10,368 ± 885 μm 2 for bolus, and (4) 10,306 ± 1212 μm 2 for aflibercept-DDS. For the nontreated groups, CNV lesion size increased by week 2 and remained increased throughout the study. The treated groups exhibited CNV size reduction after week 2 and remained for 6 months. At week 22, the average percent changes in CNV lesion area were +38.87% ± 7.08%, +34.19% ± 9.93%,-25.95% ± 3.51%, and-32.69% ± 5.40% for the above corresponding groups. No signs of chronic inflammation and other ocular abnormalities were found. Conclusions: The aflibercept-DDS was effective in treating CNV lesions for 6 months and is safe, well tolerated, and biocompatible. Translational Relevance: The proposed DDS is a promising system to reduce IVT injection frequency for anti-vascular endothelial growth factor treatment.
Study Design. Preclinical study. Objective. Develop and test a drug delivery system (DDS) composed of anti-inflammatories and growth factors in the rabbit disk injury model. Summary of Background Data. Biological therapies that inhibit inflammation or enhance cell proliferation can alter intervertebral disk (IVD) homeostasis to favor regeneration. As biological molecules have short half-lives and one molecule may not cover multiple disease pathways, effective treatments may require a combination of growth factors and anti-inflammatory agents delivered in a sustained manner. Materials and Methods. Biodegradable microspheres were generated separately to encapsulate tumor necrosis factor alpha (TNFα) inhibitors [etanercept (ETN)] or growth differentiation factor 5 (GDF5) and were embedded into a thermoresponsive hydrogel. Release kinetics and activity of ETN and GDF5 were measured in vitro. For in vivo testing, New Zealand White rabbits (n=12) underwent surgery for disk puncture and treatment with blank-DDS, ETN-DDS, or ETN+GDF5-DDS at levels L34, L45, and L56. Radiographic and magnetic resonance images of the spines were obtained. The IVDs were isolated for histologic and gene expression analyses. Results. ETN and GDF5 were encapsulated into poly (L-lactide-co-glycolide) microspheres and had average initial bursts of 2.4±0.1 and 11.2±0.7 μg from DDS, respectively. In vitro studies confirmed that ETN-DDS inhibited TNFα-induced cytokine release and GDF5-DDS induced protein phosphorylation. In vivo studies showed that rabbit IVDs treated with ETN+GDF5-DDS had better histologic outcomes, higher levels of extracellular, and lower levels of inflammatory gene expression than IVDs treated with blank-DDS or ETN-DDS. Conclusions. This pilot study demonstrated that DDS can be fabricated to deliver sustained and therapeutic dosages of ETN and GDF5. In addition, ETN+GDF5-DDS may have greater anti-inflammatory and regenerative effects than ETN-DDS alone. Thus, intradiscal injection of controlled release TNF-α inhibitors and growth factors may be a promising treatment to reduce disk inflammation and back pain.
No abstract
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.