The objectives of this research are to review existing methods used for assessing mining sustainability, analyze the limited prior research that has evaluated the methods, and identify key characteristics that would constitute an enhanced sustainability framework that would serve to improve sustainability reporting in the mining industry. Five of the most relevant frameworks were selected for comparison in this analysis, and the results show that there are many commonalities among the five, as well as some disparities. In addition, relevant components are missing from all five. An enhanced evaluation system and framework were created to provide a more holistic, comprehensive method for sustainability assessment and reporting. The proposed framework has five components that build from and encompass the twelve evaluation characteristics used in the analysis. The components include Foundation, Focus, Breadth, Quality Assurance, and Relevance. The enhanced framework promotes a comprehensive, location-specific reporting approach with a concise set of well-defined indicators. Built into the framework is quality assurance, as well as a defined method to use information from sustainability reports to inform decisions. The framework incorporates human health and socioeconomic aspects via initiatives such as community-engaged research, economic valuations, and community-initiated environmental monitoring.
The great majority of prior phytoscreening applications have been conducted in humid and temperate environments wherein groundwater is relatively shallow (~1-6m deep). The objective of this research is to evaluate its use in semi-arid environments for sites with deeper groundwater (>10m). To that end, phytoscreening is applied to three chlorinated-solvent hazardous-waste sites in Arizona. Contaminant concentrations were quantifiable in tree-tissue samples collected from two of the sites (Nogales, Park-Euclid). Contaminant concentrations were detectable, but not quantifiable, for the third site. Tree-tissue concentrations of tetrachloroethene (PCE) ranged from approximately 400-5000ug/kg wet weight for burrobrush, cottonwood, palo verde, and velvet mesquite at the Nogales site. In addition to standard trunk-core samples, leaf samples were collected to test the effectiveness of a less invasive sampling method. Leaf-sample concentrations were quantifiable, but several times lower than the corresponding core-sample concentrations. Comparison of results obtained for the test sites to those reported in the literature suggest that tree species is a major factor mediating observed results. One constraint faced for the Arizona sites was the relative scarcity of mature trees available for sampling, particularly in areas adjacent to industrial zones. The results of this study illustrate that phytoscreening can be used effectively to characterize the presence of groundwater contamination for semi-arid sites with deeper groundwater.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.