Nature uses vascular systems to permit large‐area control over the functionality of surfaces that lie above them. In this work, the application of this concept to the control of a hybrid living–nonliving system is demonstrated. Defined arrangements of vascular channels are created in agar using a fugitive ink printing method. The antibiotic gentamicin is then introduced into the vascular network where it diffuses to the surface and interacts with a model system of Escherichia coli cells. The cells either live or die depending on their distance from the underlying channels, permitting spatial control over the biological system. Using single‐channel systems to define critical parameters, a theoretical model is developed to define the final surface pattern based solely on the arrangement of the underlying vascular channels. The model is then successfully used to create more complex arrangements of cells at the surface. Finally, by introducing different types of active compounds into separate vascular channels, a mixture of bacterial species is separated and localized at defined points. This work demonstrates the ability of bioinspired embedded vascular systems to predictably control a biological system at a surface, laying the groundwork for future spatially and temporally controlled biointerfaces in both industry and medicine.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.