Nitric oxide (NO) can modulate arterial stiffness by regulating both functional and structural changes in the arterial wall. Tissue transglutaminase (TG2) has been shown to contribute to increased central aortic stiffness by catalyzing the cross-linking of matrix proteins. NO S-nitrosylates and constrains TG2 to the cytosolic compartment and thereby holds its cross-linking function latent. In the present study, the role of endothelial NO synthase (eNOS)-derived NO in regulating TG2 function was studied using eNOS knockout mice. Matrix-associated TG2 and TG2 cross-linking function were higher, whereas TG2 S-nitrosylation was lower in the eNOS(-/-) compared with wild-type (WT) mice. Pulse-wave velocity (PWV) and blood pressure measured noninvasively were elevated in the eNOS(-/-) compared with WT mice. Intact aortas and decellularized aortic tissue scaffolds of eNOS(-/-) mice were significantly stiffer, as determined by tensile testing. The carotid arteries of the eNOS(-/-) mice were also stiffer, as determined by pressure-dimension analysis. Invasive methods to determine the PWV-mean arterial pressure relationship showed that PWV in eNOS(-/-) and WT diverge at higher mean arterial pressure. Thus eNOS-derived NO regulates TG2 localization and function and contributes to vascular stiffness.
BackgroundThe structural elements of the vascular wall, namely, extracellular matrix and smooth muscle cells (SMCs), contribute to the overall stiffness of the vessel. In this study, we examined the crosslinking‐dependent and crosslinking‐independent roles of tissue transglutaminase (TG2) in vascular function and stiffness.Methods and Results SMCs were isolated from the aortae of TG2−/− and wild‐type (WT) mice. Cell adhesion was examined by using electrical cell–substrate impedance sensing and PicoGreen assay. Cell motility was examined using a Boyden chamber assay. Cell proliferation was examined by electrical cell–substrate impedance sensing and EdU incorporation assays. Cell micromechanics were studied using magnetic torsion cytometry and spontaneous nanobead tracer motions. Aortic mechanics were examined by tensile testing. Vasoreactivity was studied by wire myography. SMCs from TG2−/− mice had delayed adhesion, reduced motility, and accelerated de‐adhesion and proliferation rates compared with those from WT. TG2−/− SMCs were stiffer and displayed fewer cytoskeletal remodeling events than WT. Collagen assembly was delayed in TG2−/− SMCs and recovered with adenoviral transduction of TG2. Aortic rings from TG2−/− mice were less stiff than those from WT; stiffness was partly recovered by incubation with guinea pig liver TG2 independent of crosslinking function. TG2−/− rings showed augmented response to phenylephrine‐mediated vasoconstriction when compared with WT. In human coronary arteries, vascular media and plaque, high abundance of fibronectin expression, and colocalization with TG2 were observed.Conclusions TG2 modulates vascular function/tone by altering SMC contractility independent of its crosslinking function and contributes to vascular stiffness by regulating SMC proliferation and matrix remodeling.
Aortic stiffness, a predictive parameter in cardiovascular medicine, is blood pressure dependent and experimentally requires isobaric measurement for meaningful comparison. Vasoactive drug administration to change peripheral resistance and blood pressure allows such isobaric comparison but may alter large conduit artery wall tension, directly changing aortic stiffness. This study quantifies effects of sodium nitroprusside (SNP, vasodilator) and phenylephrine (PE, vasoconstrictor) on aortic stiffness measured by aortic pulse wave velocity (aPWV) assessed by invasive pressure catheterization in anaesthetized Sprague-Dawley rats (n = 7). This was compared with nondrug-dependent alteration of blood pressure through reduced venous return induced by partial vena cava occlusion. In vivo drug concentration was estimated by modeling clearance rates. Ex vivo responses of excised thoracic and abdominal aortic rings to drugs was measured using myography. SNP administration did not alter aPWV compared with venous occlusion (P = 0.21-0.87). There was a 5% difference in aPWV with PE administration compared with venous occlusion (P < 0.05). The estimated in vivo maximum concentration of PE (7.0 ± 1.8 ×10(-7) M) and SNP (4.2 ± 0.6 ×10(-7) M) caused ex vivo equivalent contraction of 52 mmHg (thoracic) and 112 mmHg (abdominal) and relaxation of 96% (both abdominal and thoracic), respectively, despite having a negligible effect on aPWV in vivo. This study demonstrates that vasoactive drugs administered to alter systemic blood pressure have a negligible effect on aPWV and provide a useful tool to study pressure-normalized and pressure-dependent aPWV in large conduit arteries in vivo. However, similar drug concentrations affect aortic ring wall tension ex vivo. Future studies investigating in vivo and ex vivo kinetics will need to elucidate mechanisms for this marked difference.
BackgroundMethicillin-resistant Staphylococcus aureus (MRSA) is an increasingly prevalent pathogen capable of causing severe vascular infections. The goal of this work was to investigate the role of shear stress in early adhesion events.MethodsHuman umbilical vein endothelial cells (HUVEC) were exposed to MRSA for 15-60 minutes and shear stresses of 0-1.2 Pa in a parallel plate flow chamber system. Confocal microscopy stacks were captured and analyzed to assess the number of MRSA. Flow chamber parameters were validated using micro-particle image velocimetry (PIV) and computational fluid dynamics modelling (CFD).ResultsUnder static conditions, MRSA adhered to, and were internalized by, more than 80% of HUVEC at 15 minutes, and almost 100% of the cells at 1 hour. At 30 minutes, there was no change in the percent HUVEC infected between static and low flow (0.24 Pa), but a 15% decrease was seen at 1.2 Pa. The average number of MRSA per HUVEC decreased 22% between static and 0.24 Pa, and 37% between 0.24 Pa and 1.2 Pa. However, when corrected for changes in bacterial concentration near the surface due to flow, bacteria per area was shown to increase at 0.24 Pa compared to static, with a subsequent decline at 1.2 Pa.ConclusionsThis study demonstrates that MRSA adhesion to endothelial cells is strongly influenced by flow conditions and time, and that MSRA adhere in greater numbers to regions of low shear stress. These areas are common in arterial bifurcations, locations also susceptible to generation of atherosclerosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations –citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.